Hall Ticket No: Question Paper Code	de: 20CE104
-------------------------------------	-------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 ENVIRONMENTAL ENGINEERING

(Civil Engineering)

Time: 3Hrs

Max Marks: 60

0.4	and a primary in the control of the	Marks	СО	BL
Q.1	i. Define the term Air Pollution.	-1	1	1
	ii. What is the expected BOD and COD range for domestic wastewater?	1	1	1
	iii. What is a water quality index?	1	2	1
	iv. What is Manning's equation?	1	2	1
	v. Write the equation of Stoke's law.	1	3	1
	vi. What is sewage?	1	3	1
	vii. What is the unit used to express the noise?	1	4	1
	viii. What do you know about Sludge drying?	1	4	1
	ix. How is the segregation of solid waste conducted?	1	5	1
	x. List the components of Air.	1	5	1
Q.2(A)	Define Sedimentation and Explain the process and components of a slow sand filtration unit. OR	10	1	3
Q.2(B)	List the different types of appurtenances used in water supply systems. Explain the water distribution system	10	1	3
Q.3(A)	Differentiate between biological and chemical wastewater treatment? Explain the aerobic and anaerobic types of wastewater treatment methods.	10	2	3
	OR			
Q.3(B)	What is sewage pumping? What are the factors influencing the variation in sewage flow also list some of the design considerations for sewerage systems.	10	2	3
Q.4(A)	Name and explain any two different types of low-cost wastewater treatment methods used in villages.	10	3	2
	OR			
Q.4(B)	How do the sludge drying beds work? List the factors affecting sludge digestion.	10	3	4

Q.5(A)	What is the acceptable range of noise for human hearing? Write a note or methods of noise control.	10	4	3	
	OR				
Q.5(B)	How to mitigate vehicular air pollution? Explain how air pollution can be controlled using air pollution control equipment.	10	4	4	
Q.6(A)	Explain Different methods of solid waste disposal.	10	5	3	
a	OR				
Q.6(B)	What is biodegradable solid waste? Explain the methods of waste management using reduce, reuse, and recycle principles. *** END***	10	5	3	

Hall Ticket No:						Question Paper Code: 20CE105

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 ENGINEERING HYDROLOGY

Time:	(Civil Engineering)	Ma	x Marl	ks: 60
	ttempt all the questions. All parts of the question must be answered in All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A	one pla	ace on	
			СО	BL
Q.1	i. What are the first checks to be carried out after collecting rainfall data?	1M	1	1
	ii. Differentiate between hydrologic and hydraulic channel routing?	1M	1	1
	iii. What is orographic precipitation?	1M	2	1
	iv. What is Aquiclude?	1M	2	1
	v. What is Pigmy meter?	1M	3	1
	vi. What is channel routing?	1M	3	1
	vii. What is intrinsic permeability?	1M	4	1
	viii. What is Field Capacity?	1M	4	1
	ix. What is the significance of DAD curves?	1M	5	1
ži.	x. What is the name of the equipment used for evapotranspiration measurement?	1M	5	1
Q.2(A)	i) Define the following: Mass curve of rainfall, Hyetograph and Rainfall Excess.	3M	1	2
	ii) Explain a Thiessen Polygon method of finding average rainfall over an area.	7M	1	3
	OR			
Q.2(B)	Discuss about different forms of precipitation. How do you estimate missing rainfall data? Explain in detail.	10M	1	4
Q.3(A)	(i) The infiltration capacity in a basin is represented by Horton's equation as $f_p=2.7+e^{-2t}$	6M	2	4
	Where f_p is in cm/h and t is in hours. Assuming the infiltration to take place at capacity rates in a storm of 60 minutes duration, estimate the depth of infiltration in first 30 min duration and the second			
	30min duration. (ii) What is evapotranspiration? Differentiate between potential and actual evapotranspiration OR	4M	2	2
0.3/5/		1014	ר	,
Q.3(B)	(i) Explain briefly the evaporation process. Discuss the factors that	10M	2	4

		the evaporation from wa at are the various metho body?		evaporation loss from	Allen	m	
Q.4(A)		suitable example ex rement of stream flow	plain various OR	methods of direct	10M	3	3
Q.4(B)	(i) Wha	at is rating curve? Outlin	e various probl	ems associated with	5M	3	2
		lain the method of findi	discharge	5M	3	4	
Q.5(A)		ha watershed has the	_		10M	4	4
	_	of travel of water in t					
		on between the most re	mote point on	the catchment and the			
	outlet=	=85m, Land use:	Araa (ha)	Runoff			
		Land use/land cover	Area (ha)	coefficient	21		
		Forest	50	0.21			
		Pasture	20	0.16			
		Cultivated Land	90	0.43			
	VV	atershed is given by $i=rac{1}{2}$	$\frac{2.97T^{0.159}}{(D+0.18)^{0.81}}$				
		e, i= intensity in cm/ =duration of rainfall in h	h, T=Return				
	Estima	ate 30 year peak runoff f	rom the waters	shed that can be expec	tı		
Q.5(B)		t is Flood Forecasting" sting flood?	? What are th	e various methods of	5M	4	2
		ng example discuss the sting in brief.	e Unit Hydrogi	aph method of flood	5M	4	4
Q.6(A)		is Darcy's law? Using sui mate discharge from a c	confined aquife	·	10M	5	2
0.6451		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OR			_	
Q.6(B)	•	w and describe different			5M	5	4
	of per	Ocm diameter well com meability 50 m/day. Th state of pumping, the c	e length of the	stainer is 20m. Under		5	4
		d the radius of influence					

Hall Ticket No: Question Paper Cod

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 CONCRETE TECHNOLOGY

	CONCRETE TECHNOLOGY (Civil Engineering)			
Time:	·	Max Ma	arks: 60)
).	Attempt all the questions. All parts of the question must be answered in one parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B		•	
		Maulea	60	D.
Q.1	i. Highlight the features of Segregation of Concrete.	Marks 1M	CO 1	BL 1
Q.1	i. Highlight the features of Segregation of Concrete.ii. Define shrinkage of concrete	1M	1	1
	iii. Quote the different types of Slump in Concrete	1M	2	1
	iv. Outline the purpose of Concrete Mix Design.	1M	.2	1
	v. Recall how the C-S-H particles pack and leave the gel pores	1M	3	1
	between inter particle region at nanoscale			
	vi. Identify the necessity of Statistical Quality Control for concrete.	1M	3	1
	vii. Define High-Density Concrete.	1M	4	1
	viii. Recognize the concern about durability of concrete structures?	1M	4	1
	ix. Label the parameters observed in Shape of an Aggregate.	1M	5	1
	x. Describe the necessity of Statistical Quality Control of concrete.	1M	5	_ 1
Q.2(A)	Predict the impact of Air Entraining on strength of concrete?	10M	1	5
	OR			
Q.2(B)	Summarize the impact of cementitious composites containing Calcium silicate slag.	10M	1	4
Q.3(A)	List the factors affecting the workability of concrete.	10M	2	4
	OR			
Q.3(B)	Describe the scheme of portland cement hydration	10M	2	3
Q.4(A)	Interpret the Non-Destructive Testing Methods.	10M	3	5
	OR			
Q.4(B)	Give a list of determination of the Original Water / Cement ratio.	10M	3	3
Q.5(A)	Present the concept of Mix Design.	10M	4	
	OR			
Q.5(B)	Comment on the significance of Durability of Concrete structures.	10M	4	
Q.6(A)	Identify the significance of the orientation of fibres affecting the properties of Fibre reinforced concrete	10M	5	
	OR			

*** END***

Explain the shielding ability of concrete.

Q.6(B)

10M

Hall Ticket No:				Question Paper Code: 20CE107
-----------------	--	--	--	------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 STRENGTH OF MATERIALS

	STRENGTH OF MATERIALS			
Time	(Civil Engineering)	Max Ma	rks: 60	n
	Attempt all the questions. All parts of the question must be answered in one p All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B or	ace only.		<u>* </u>
		Marks	СО	В
Q.1	i. Define Hook's law?	1M	1	1
	ii. Write the various types of the stresses.	1M	1	1
	iii. What is meant by point of contra flexure?	1M	2	1
	iv. What are the assumptions have considered in the Euler's column buckling?	1M	2	1
	v. Define Neutral axis of the beam.	1M	3	1
	vi. State any four assumptions in the simple bending theory	1M	3	1
	vii. Define principal stress and principal strain	1M	4	1
	viii. What is the use of Mohr's circle?	1M	4	1
	ix. Mention the situations where we need conjugate beam method	1M	5	1
	x. Write the relation between bending moment, slope and deflection	1M	5	1
Q.2(A)	A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured extension on gauge length of 200 mm is 0.1 mm and change in diameter is 0.004 mm. Calculate Young's modulus, Poisson's ratio and Bulk modulus. OR	10M	1	
Q.2(B)	Find the total extension of the bar as shown in Figure. Take E=200Gpa. d=15 mm d=30 mm d=30 mm 70kN	10M	1	
- 2/1\	180 mmm 260 mm 160 mm	1014		
Q.3(A)	Draw SFD and BMD for the beam as shown in Figure. 30 kN 50 kN/m 40 kN	10M	2	
	$\stackrel{\text{3m}}{\longleftrightarrow} \stackrel{\text{4m}}{\longleftrightarrow} \stackrel{\text{2m}}{\longleftrightarrow}$			
	OR			
Q.3(B)	A cylindrical column 150 mm external diameter and 100 mm internal diameter, 7 m long is hinged at both ends. Calculate (i) Euler's crippling load, (ii) Crippling load as given by Rankine's formula. Given E = 80 GPa, α =1/1600 and α =550 N/mm².	10M	2	

Q.4(A) The SSB of span 4 m has a cross section as shown in Figure. If the permissible stress of the material of beam is 140 N/mm². To determine (i) the maximum UDL it can carry, (ii) the maximum point load it can carry at the center of span, and (iii) the maximum point load if can carry at a distance of 1 m from left support.

Q.4(B) Draw the shear stress variation diagram for the I-section shown in Figure, 10M 3 5 if it is subjected to a shear force of 150 kN.

Q.5(A) A shaft has to transmit 105kW power at 160 r.p.m. If the shear stress 10M 4 5 exceed 65 N/mm² and the twist in a length of 3.5 m must not exceed 1°. suitable diameter. Take C=8 X 10⁴ N/mm².

OR

Q.5(B) A rectangular block of material is subjected to a tensile stress of 10M 4 5 110 N/mm² on one plane and a tensile stress of 47 N/mm² on the plane right angles to the former. Each of the above stresses is accompanied by a shear stress of 63 N/mm². To find the (i) direction and magnitude of Principal stress and (ii) magnitude of greatest shear stress.

Q.6(A) Using moment area method find maximum slope and deflection of (i) Simply supported beam subjected to point load at the centre and

5

10M

(ii) Cantilever beam subjected to UDL over the entire span.

OF

Q.6(B) A simply supported beam of span 6 m carries two concentrated loads 50 kN and 40 kN at a distance of 2 m and 5 m respectively from the left support. Find (i) deflection under each load, (ii) maximum deflection and its location, (iii) slopes at ends. Assume Take E=1 x 10^4 N/mm² and l=10 x 10^6 mm⁴.

*** END***

Hall Ticket No: Question Paper Code: 20	MAT104
---	--------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 PROBABILITY & STATISTICS FOR ENGINEERS

(Common to CE, EEE)

T	ime: 3	Hrs			mmon to		N	lax Mark	s: 60	
							t be answered in one place answer either A or B on			
	pil.	and residence of		Two I				Marks	со	BL
Q.1	i.	If two dice are the	ำหา ห	hat is the	nrohability	v that the	sum is greater than 8?	1M	1	2
	ii.	State conditions f			-		=	1M	1	1
	III.	Evaluate $\int_{0}^{\infty} z^{2}e^{-z}dz$	lz					1M	2	2
	iv.	iv. Write the moment generating function of Gamma distribution.								
	٧.	Define covariance						1 M	3	1
	vi.	Define the condit	ional de	ensity of X	given Y=y			1M	3	1
	vii.	Write an example	of One	-Tailed te	st.			1M	4	1
	viii.	If P=0.5 and the s	ample s	size is 250	then the s	tandard e	error is	1M	4	1
	ix.	What is Two-Way	ANOV	Α?				1M	5	1
	х.	What is Replication	on in de	sign of ex	periments	?		1M	5	1
Q.2(A)	i) Sta	te and prove Bayes	theore	em.				5M	1	3
							ctively 25%, 35% and 40% A bolt is drawn at random		1	3
		the production an manufactured by m				What ar	e the probabilities that it			
Q.2(B)	i) A continuous random variable X has a probability density function $f(x)=kx(1-x), 0 \le x \le 1$. Compute (a) k (b) Mean (c) variance (d) $P(X<0.4)$ (e) Distribution Function of X								1	3
Q.3(A)	Thor	noon of the Binomi	al dietri	hution is:	and varia	9		10M	2	4
		nean of the Binomi					Then			
	find (a) the value of the	n (b) ^P	$(X \geq 7)$	(c) $P(1 \le 2$	∀ ≤ 6)				
Q.3(B)		Derive the moment generating function of Normal distribution and find the mean and variance.								4
Q.4(A)		_					(i) Marginal distributions	s 10M	3	3
	of X a	and Y (ii) the condi	X\Y	distribution 0	on of X give	n Y=2	_(iii) Cov[XY]			
			-1	1/15	3/15	2/15				
			_	1,13	د ۱ رد	2/13				
				2/15	2/45	1/15				
			0	2/15	2/15 1/15	1/15 2/15				

Q.4(B) The joint density for (X,Y) is given by $f(x,y) = xye^{-x}e^{-y}$ x>0, y>0

10M 3 3

- (i) Find the marginal densities for X and Y.
- (ii) Find Cov (X,Y)
- (iii) Are X and Y independent?
- (iv) Find $p(X \le 1)$

Q.5(A) The average mark scored by 32 boys is 72 with a S.D of 8, while 36 girls is 70 with S.D 10M 4 3 OF 6. Test the significance difference between the means.

OR

Q.5(B) The time taken by the workers in performing a job by method I and method II is given 10M below:

4 3

 Method-I
 20
 16
 26
 27
 23
 22

 Method-II
 27
 33
 42
 35
 32
 34
 38

Do the data show that the variances of time distribution from population from which these samples are drawn do not differ significantly?

Q.6(A) Data recorded on three variety of wheat treated with five fertilizers the yield per acre 10M 5 4 is given below.

	Variety of wheat						
fertilizer	v1	v2	v3				
f1	55	70	62				
f2	65	66	52				
f3	60	65	49				
f4	62	68	48				
f5	58	63	52				

Analyze the data by Two-Way ANOVA and give your conclusion.

OR

Q.6(B) Analyse the variance in the following Latin square of yields (in kgs) of paddy; where A, 10M 5 4 B, C, D denote the different methods of cultivations.

	Fertilizers								
	D	Α	С	В					
	8	12	19	10					
	В	С	Α	D					
	_ 12 _	18	7	6					
Plots	Α	В	D	С					
1,1,9.00	5	22	10	21					
	С	D	В	Α					
	27	12	17	7					

*** END***

Hall Ticket No:	2					 Question Paper Co	de: 20EEE105

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 ELECTROMAGNETIC FIELDS

(EEE)

Time	: 3Hrs		lax Mark	s: 60	
		It all the questions. All parts of the question must be answered in one parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B		/.	
Q.1	i.	Represent point P(0,2,1)m given in Cartesian coordinates into	Marks 1M	CO 1	BL 1
	ii.	spherical coordinates. Define the term Gradient.	1M	1	2
	iii.	How do you represent coulomb's law?	1M	2	1
	iv.	What is the electric field intensity at a distance of 15 cm from a charge of 1.5 μ C in a vacuum?	1M	2	1
	٧.	Define: Magnetization	1M	3	1
	vi.	Distinguish between scalar and vector magnetic potential.	1M	3	1
	vii.	What is meant by displacement current?	1M	4	1
	víii.	State Stoke's theorem.	1 M	4	1
	ix.	Mention any two properties of uniform plane wave	1M	5	-
	x.	What is the skin effect?	1M	5	1
Q.2(A)	Expla	in in detail the line, surface, and volume integrals of vector functions.	10M	1	2
Q.2(B)	of co	OR hat is meant by a coordinate system? Explain in detail different types ordinate systems. If the two points: A(x=3,y=2,z=-1) and B(r=4, θ =30°, Φ =120°). Find the rical coordinates of A and Cartesian coordinates of B.	5M 5M	1	3
Q.3(A)	char	etermine the electric field intensity at P(-0.3 , 0, -2.1) due to a point ge of $+5$ nC at Q(0.2 , 0.1 , -2.5) in air. All dimensions are in meters. erive the expression for energy density in electrostatic fields. OR	5M 5M	2	3
Q.3(B)	havir ii). A	educe an expression for the capacitance of a parallel plate capacitoring two dielectric media. parallel plate capacitor has an area of 0.6 m ² separation of 0.2 mm a dielectric for which ϵ_r =1000 and a field of 10 ⁶ V/m. Calculate C and	5M 5M	2	

Q.4(A)	Derive the expression for self-inductance, mutual inductance, and coefficient of coupling. OR	10M	3	3
Q.4(B)	Derive the boundary condition to explain the behavior of the magnetic field at the interface of two media.	10M	3	4
Q.5(A)	Derive Maxwell's equations in Integral and point forms.	10M	4	3
	OR			
Q.5(B)	Write short notes on Transformer EMF and Motional EMF.	10M	4	4
Q.6(A)	Derive the Electromagnetic wave equations in phasor form. OR	10M	5	3
Q.6(B)	State and prove Poynting's theorem and derive the expression for average power *** END***	10M	5	2

MANUFACTURE OF THE PROPERTY OF

lall Ticket No: Question Paper Code: 20EE

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 **DIGITAL ELECTRONICS**

	(EEE)			
Time	: 3Hrs	Max Ma	rks: 60	
	Attempt all the questions. All parts of the question must be answered in one pl All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B o			
		Marks	СО	BL
Q.1	i. What are special gates? Write down the truth table?	1M	1	1
	ii. Convert (ABCD) ₁₆ into binary?	1M	1	1
	iii. Design 2x1 MUX?	1M	2	2
	iv. Draw 4 variable K map?	1M	2	1
	v. Mention the applications of counter?	1M	3	1
	vi. Define flip-flop?	1M -	3	1
	vii. Define fanout?	1M	4	1
	viii. Define propagation delay?	1M	4	1
	ix. Differentiate RAM and ROM	1M	5	2
	x. Expand FPGA?	1M	5	1.
Q.2(A)	(i) Perform the following arithmetic operation using 2's Complement method?	6M	1	3
	(a)101111-100110 (b)111001-011010 (ii) Solve the following (a)(53.625) $_{10}$ to (?) $_2$ (b)(3FD) $_{16}$ to (?) $_2$	4M	1	3
	OR			
Q.2(B)	What are Universal gates? Realize all the logic gates using NAND and NOR gates?	10M	1	2
Q.3(A)	Simplify the following Boolean functions, using a four variable Karnaugh map method and implement the simplified function using NAND gates $F(A,B,C,D) = \Sigma(0,2,4,5,6,7,8,10,13,15)$ OR	10M	2	3
Q.3(B)	Design & Give expression for 2 bit Magnitude comparator?	10M	2	3
Q.4(A)	i) Convert JK Flip Flop to SR Flip Flop?	6M	3	2
×	ii) Write the differences between synchronous and asynchronous counters?	4M	3	2
	OR			
Q.4(B)	i) Design a 4 bit Shift Register and explain its operation?	6M	3	3
Ψ. Τ(D)	ii) What is Race around condition? How to avoid it?	4M	3	2
Q.5(A)	Compare the RTL,DTL,TTL,ECL and MOSL logic families?	10M	4	2
	OR			
Q.5(B)	Draw and Explain the operation of TTL NAND logic gate?	10M	4	2

Q.6(A)	Explain about different types of Memories?	10M	5	2
	OR OR			100
Q.6(B)	i) Compare the Different features of PROM, PAL and PLA?	6M	5	2
	ii) Write short note on FPGA?	4M	5	- 2
	*** FNID ***			

Hall Ticket No:							Question Paper Code: 20EEE107
-----------------	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 INDUCTION & SYNCHRONOUS MACHINES

Time	: 3Hrs	(EEE)	Max Ma	rks. 60	n
	_	tempt all the questions. All parts of the question must be answered in one place. All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B or B.	ace only.	IKS. O	<u> </u>
	UU		Marks	со	BL
Q.1	i.	Calculate the pitch factor of the winding: 36 stator slots, 4-poles, coil span 1-15	1M	1	2
	ii.	What is the significance of rotating magnetic field in rotating machine?	1M	1	1
	iii.	Compare salient pole and non-salient pole synchronous machine	1M	2	1
	iv.	What is the significance of synchronous condenser	1M	2	
	٧.	Draw the V and inverted V curves of the synchronous motor?	1M	.3	1
	vi.	Why the synchronous motor is not self-starting?	1M	3	1
	vii.	What is the principle of synchronous generator?	1M	4	1
	viii.	Why the slip ring induction motor have high starting torque?	1M	4	2
	ix،	Write the principle of switch reluctance motor.	1M	5	1
	х.	Write the advantages of brushless motor over brushed motor.	1M	5	1
Q.2(A)	i). De	escribe the advantages of providing field winding on the rotor and	6M	1	2
· · · · · · · · · · · · · · · · · · ·	arma	ture winding on the stator in case of large synchronous machine.			
	IIJ.DIS	stinguish between	4M	1	2
		a) armature winding and field winding b) load current and exciting current OR			
(.2(B)	i). Co	mpare salient pole and non-salient pole synchronous machine.	5M	1	
	ii).Fo	r a 3-phase alternator, derive the expressions	5M	1	
		a).Pitch-factor b).Distribution factor			
Q.3(A)	2,000	o alternators are running in parallel, supplying a lighting load of 0 kW and a motor load of 4,000 kw at pf 0.8 lagging. One machine is ed to 2,400 kW at pf 0.95 lagging. What is the output & pf of second nine?	6M	2	
		that are the advantages of parallel operation? OR	4M	2	2
Q.3(B)	term	nin with phasor diagram, the effect of armature reaction on the inal voltage of an alternator at (i) UPF load, (ii) lagging ZPF load and eading ZPF load.	10M	- 2	

Q.4(A)	i). What is the power factor? Explain how a synchronous motor can be used for power factor improvement, with proper vector diagram.	6M	3	2
	ii).Explain what happens when a synchronous motor is loaded beyond its pull-out load. OR	4M	3	2
Q.4(B)	i).Draw the phasor diagram of synchronous motor and derive expressions for torque?	5M	3	2
	ii).A 3-phase, 415V, 6-pole, 50Hz, star connected synchronous motor has line emf of 520V. the stator winding has a synchronous reactance of	5M	3	3
	20hm per phase, and the motor develops a torque of 220 Nm. Calculate the load angle?			
Q.5(A)	i).Explain different speed control methods of 3-phase induction motor?	5M	4	2
	ii).A 3-phase,400V, 6 poles, 50 Hz Induction motor takes a power input of its full load speed of 970 rpm. The total stator losses are 1 KW and the windage losses are 1.5 KW. Then calculate (a) slip (b) rotor copper losses. OR	5M	4	3
Q.5(B)	i). Explain the construction of circle diagram for 3-phase induction motor.	6M	4	2
Q.5(5)	ii).A 3-phase induction motor has 4 poles and is connected to 400V,50Hz supply. Calculate the actual rotor speed and rotor frequency when the slip is 4%.	4M	4	3
Q.6(A)	i).Explain construction and working principle of stepper motors?	5M	5	3
	ii).Explain about capacitor-run single phase induction motors?	5M	5	3
	OR			
Q.6(B)	i).Explain double field revolving theory.	5M	5	3
	ii). A 230V,50Hz,4-pole, single phase induction motor has the following parameters. R_1 =2.51ohm, R_2 =7.81 ohm, X_m =150.8 ohm, X_1 =4.62 ohm,	5M	5	3
	X_2 =4.62 ohm. Determine the main winding current and power factor when motor is running at a slip of 0.05.			

Hall Ticket No:											Question Paper Code: 20EEE108
-----------------	--	--	--	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations - AUG/SEP 2022 **CONTROL SYSTEMS**

(EEE)

Time: 3Hrs Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only. All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

			Marks	CO	BL
Q.1	i.	What are the applications of Closed Loop Systems?	1M	1	1
	ii.	Define Transfer function.	1M	1	1
	iii.	What are the different types of Static errors?	1M	2	1
	iv.	Write the generalized expression for steady state error (ess).	1M	2	1
	v.	Define BIBO Stability.	1M	3	1
	vi.	Write the expression for angle of Asymptotes in Root locus?	1M	3	1,
	vii.	Define Phase Margin.	1M	4	1
	viii.	What is Lead Compensator?	1M	4	1
	ix.	Draw the block diagram of PID controller	1M	5	2
	х.	Define State Space Model.	1M	5	1
Q.2(A)	a)Coi	mpare Open loop and Closed loop Systems?	6M	1	2
	b)Wł	nat is the significance of Mason's gain formula	4M	1	2
		OR			
Q.2(B)	Obta	in the transfer function of the mechanical systems shown in Figure.	10M	1	3
		X_1 X_1 X_2 X_2 X_3 X_4 X_4 X_4 X_5 X_4 X_4 X_5 X_4 X_5 X_4 X_5 X_6 X_7 X_8			

Q.3(A) Derive the expressions for rise time, peak time and peak overshoot for 2 3 10M underdamped second order system.

OR

- Q.3(B) A unity feedback servo-driven instrument has an open loop transfer 10M 2 3 function $G(s) = \frac{10}{s(s+2)}$ find
 - The natural frequency of oscillation and damping ratio (a)
 - (b) The time domain response for a unit step input
 - Peak time and maximum overshoot (c)
 - Steady state error to an input (1+4t) (d)

- Q.4(A) Apply RH criterion to determine the location of roots on the s-plane and 10M 3 3 hence the stability for the system whose characteristic equation is $s^5 + 2s^4 + 2s^3 + 4s^2 + s + 2 = 0$.
- Q.4(B) Given a unity feedback system with open loop transfer function G(s) = 10M 3 3 $\frac{K}{s(s+1)(s+2)}$. Draw the Root locus plot for the given function?
- Q.5(A) Sketch the bode plot for the following Transfer function and determine 10M 4 3 phase margin and gain margin 75(1 + 0.2s)

$$G(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}$$

OR

- Q.5(B) Construct the typical sketches of polar plot for the following systems: 10M 4 2
 - i. Type: 0, Order: 1 ii. Type: 0, Order: 2
 - iii. Type: 1, Order: 2
 - iv. Type: 1, Order: 3v. Type: 2, Order: 4
- Q.6(A) The transfer function of a system is given by

10M 5 3

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 9}{8s^4 + 24s^3 + 34s^2 + 23s + 6}$$

Determine State model.

OR

Q.6(B) Obtain the state space representation of an armature-controlled DC motor 10M 5 3

*** FND***

Hall Ticket No:					v.N	Question Paper code:20HUM101

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – AUG/SEP 2022 ECONOMICS & FINANCIAL ACCOUNTING FOR ENGINEERS

(Common to ME, CSE, CSE(IOT), CSE(DS), CSE(CS), CSE(AI))

Time: 3Hrs	Max Marks: 60

	Marks		
		CO	BL
i. What is micro Economics?	1M	1	1
i. Define scarcity.	1M	1	1
			1
			1
- , ,			1
			1
- ·	1M	4	1
-	1M	4	1
	1M	5	1
k. Illustrate Earing Per share	1M	5	1
fine Managerial Economics. Explain Nature and scope of Economics	10M	1	2
OR			
hat is elasticity of demand? Describe Types of Price Elasticity in detail	10M	1	1
t out Breakeven point assumptions and importance.	10M	2	
OR			
amine Production Function in short run	10M	2	4
ate the features of perfect competition market	10M	3	3
OR			
ow do you determine price- output under monopoly?	10M	3	4
ucidate Accounting concepts and conventions	10M	4	5
OR			
n you journalize entries from the following transactions:	10M	4	2
		19	
1.2020 Goods Purchased for cash Rs. 2,000			
1.2020 Goods sold to Raju R s. 3000			
1.2020 Salaries paid Rs. 10,000 1.2020 Machinery purchased paid by cheque Rs. 10,000			
i i i i	ii. Short note on Production function Outline opportunity cost Write features of oligopoly. ii. How do you classify the markets? iii. Examine Accounting cycle iii. Outline the Ledger X. What are the Quick Assets? X. Illustrate Earing Per share Effine Managerial Economics. Explain Nature and scope of Economics OR That is elasticity of demand? Describe Types of Price Elasticity in detail St out Breakeven point assumptions and importance. OR amine Production Function in short run ate the features of perfect competition market OR ON ON ON ON ON ON ON ON ON	ii. Short note on Production function v. Outline opportunity cost v. Write features of oligopoly. ii. How do you classify the markets? iii. Examine Accounting cycle iii. Outline the Ledger v. What are the Quick Assets? v. What are the Quick Assets? v. Illustrate Earing Per share Image: In the Managerial Economics. Explain Nature and scope of Economics OR In that is elasticity of demand? Describe Types of Price Elasticity in detail vict out Breakeven point assumptions and importance. OR In the features of perfect competition market OR OR In you do you determine price- output under monopoly? In you journalize entries from the following transactions: In you journalize entries	ii. Short note on Production function v. Outline opportunity cost v. Write features of oligopoly. ii. How do you classify the markets? iii. Examine Accounting cycle iii. Outline the Ledger x. What are the Quick Assets? x. Illustrate Earing Per share Im 5 OR hat is elasticity of demand? Describe Types of Price Elasticity in detail or OR amine Production Function in short run OR OR OR attention Function in short run OR OR OR OR OR OR OR OR OR O

Q.6(A) A business firm is thinking of choosing the right machine for their purpose after financial evaluation of the proposals the initial cost and the net cash flow over five years .the business have cash flows details of machines, Discount factor @10%, 1st Year 0.909, 2nd Year 0.826, 3rd Year 0.753, 4th Year 0.682, Fifth year 0.621.

10M 5 3

Particulars	Machine X	Machine y
Initial cost_of machine	20000	28000
Cash flows 1 st year	8000	10000
2 nd year	12000	12000
3 rd year	9000	12000
4 th year	7000	9000
5 th year	6000	9000
Calculate 1) Payback perio	od 2) NPV 3) Profit	ability index

OR

Q.6(B) How do you classify different types of Ratios

10M 5 4

*** END***

	ADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MAD (UGC-AUTONOMOUS) ech II Year II Semester (R20) Regular End Semester Examinations — A MECHANICS OF SOLIDS (Mechanical Engineering)	ANAP	ALLE								
Ti	Time: 3Hrs Max Marks: 60										
	Attempt all the questions. All parts of the question must be answered in one place. All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only	e only. I y									
0.1		Marks	со	BL							
Q.1	i. Distinguish between limit of proportionality and elastic limit.	1M	1	1							
	ii. What are principal planes and principal stresses? iii. Define a beam and classify different types of beams	1M	1	1							
	and classify directive types of beams.	1M	2	2							
	iv. Define shear force and bending moment.	1M	2	2							
	v. What is meant by pure bending? vi. Define deflection and slope of a beam when it is loaded	1M	3	1							
	Topo of a beam with it is loaded.	1M	3	2							
	s and the strike the strike the second to be second to be selected and by the second	1M	4	2							
	the state of the s	1M	4	2							
	ix. Give the ratios of equivalent length and actual length of column for different end conditions.	1M	5	2							
	x. Differentiate long column and short column.	1M	5	1							
Q.2(A)	A compound tube consists of a steel tube 140 mm internal diameter and 160 mm external diameter and an outer brass tube 160 mm internal diameter and 180 mm external diameter. The two tubes are of the same length. The compound tube carries an axial load of 900 kN. Find the stresses and the load carried by each tube and the amount it shortens. Length of each	10M	1 1 1	3							
	tube is 140 mm. Take E for steel as 2×10^5 N/mm ² and for brass as 1×10^5 N/mm ² .										
Q.2(B)	OR The stresses on two mutually perpendicular planes are 40 MPa (tensile) and 20 MPa (tensile). The shear stress across these planes is 10 MPa. Determine	10M	1	4							
	the magnitude and direction of resultant stress on a plane making an angle of 30° with the plane of first stress.										
Q.3(A)	A cantilever of length 6 m carries two point loads of 2 kN and 3 kN at a distance of 1 m and 6 m from the fixed end respectively. In addition to this the beam also carries a uniformly distributed load of 1 kN/m over a length of 2 m at a distance of 3 m from the fixed end. Draw the S.F. and B.M. diagrams.	10M	2	4							
Q.3(B)	OR A beam of length 10 m is simply supported and carries point loads of 5 kN each at a distance of 3 m and 7 m from left support and also a uniformly distributed load of 1 kN/m between the point loads. Draw S.F. and B.M. diagrams for the beam.	10M	2	4							

Q.4(A) A beam of I-section shown in Fig is simply supported over a span of 10 m. It 10M 3 4 carries a uniform load of 4 kN/m over the entire span. Evaluate the maximum bending stresses.

4

Q.4(B) A beam of length 10 m is simply supported at its ends and carries two point loads of 100 kN and 60 kN at a distance of 2 m and 5 m respectively from the left support. Calculate the deflections under each load. Find also the maximum deflection. Take $I = 18 \times 10^8 \text{ mm}^4$ and $E = 2 \times 10^5 \text{ N/mm}^2$.

Q.5(A)	Derive the torsion equation and state clearly the assumptions involved.	10M	4	3
	OR			
Q.5(B)	A solid circular shaft of 10 cm diameter of length 4 m is transmitting 112.5 kW power at 150 r.p.m. Determine the maximum shear stress induced in the shaft. Take modulus of rigidity value as 8×10^4 N/mm ² .	10M	4	3
Q.6(A)	Derive the equation for the Euler's crippling load for a column with both of the ends hinged. OR	10M	5	3
Q.6(B)	A solid round bar 60 mm in diameter and 2.5 m long is used as a strut. One end of the strut is fixed, while its other end is hinged. Find the safe compressive load for this strut, using Euler's formula. Assume E = 200 GN/m ² and factor of safety = 3. *** END***	10M	5	4

MAD	: No: Question F	Paper Code:		
IVIAD	ANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, N	/ADANA	PALL	E
	(UGC-AUTONOMOUS)			
Tech	Il Year II Semester (R20) Regular End Semester Examination		ST 202	22
. 1 CC11				
	THEORY OF MACHINES			
	(Mechanical Engineering)		2032.00	
Time:		Max Ma	STATE OF	,
Α	ttempt all the questions. All parts of the question must be answered in All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A	one place o or B only	nly.	
	the state of the s	Marks	CO	BL
	the first of the same and the same and the return ratio (O		1	2
1.1	 In crank and slotted lever mechanism why quick return ratio (Q is greater than 1. Justify your answer. 	H = 3 H = b	-90E	2
	ii. How Grashof's law is helpful in classifying the four bar mechani into different types?	sms 1M	1	2
	iii. Mention the 2 components of acceleration.	1M	2	2
		1M	2	1
		1M	3	1
	v. State law of gearing.	1M	3	1
	vi. Define gyroscopic couple.	1M	4	1
	vii. State the conditions for static and dynamic balancing.		1	2
	VIII. State the application of carrine changing.		5	1
	ix. State the difference between longitudinal and transverse vibratix. What is the difference between free and forced vibrations?	ons. 1M 1M	5	3
).2(A)	Determine the number of degrees of freedom for the follow	wing 10M	interioscopeciary	miles 20,64
		wing 10M	pm 1	3
	mechanisms. (a)	WilligO	1000 1000 1000 1000	3
	mechanisms. (a)	0	pm b	3
	mechanisms. (a)	0	print l	3
V 1	mechanisms. (a) (b) (c)	0	print l	3
	mechanisms. (a) (b) (c) OR	UPSA PU LO ELL LIDA EZA ELLI TO ESTO ELLI TO		
Q. 2(B)	mechanisms. (a) (b) OR State the Explain with a neat sketch any three inversions of single scrank chain.	Line 100	/ 1	0
	THE Explain with a neat sketch any three inversions of single scrank chain. In a four-bar chain ABCD, AD is fixed and is 150 mm long. The crank	slider 10N	/ 1	0
	THE Explain with a neat sketch any three inversions of single scrank chain. In a four-bar chain ABCD, AD is fixed and is 150 mm long. The crank	slider 10N	/ 1	0
	TIMPUT COLLER OUTPUT LINK OR State the Explain with a neat sketch any three inversions of single scrank chain. In a four-bar chain ABCD, AD is fixed and is 150 mm long. The crank 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 86	slider 10N	/ 1	
	State the Explain with a neat sketch any three inversions of single scrank chain. In a four-bar chain ABCD, AD is fixed and is 150 mm long. The crank 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length.	slider 10N	/ 1	
/	State the Explain with a neat sketch any three inversions of single scrank chain. In a four-bar chain ABCD, AD is fixed and is 150 mm long. The crank 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular ve of link CD when angle BAD = 60°.	slider 10N	/ 1	0
Q. 2(B)	State the Explain with a neat sketch any three inversions of single scrank chain. In a four-bar chain ABCD, AD is fixed and is 150 mm long. The crank 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length. Find the angular versions of single scrank that the link CD = 80 oscillates about D. BC and AD are of equal length.	slider 10N AB is 10N O mm	/ 1 // 2	0

when angle QPS = 60° and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links QR and RS.

Q.4(A) An aeroplane makes a complete half circle of 50 metres radius, towards left, when flying at 200 km per hr. The rotary engine and the propeller of the plane has a mass of 400 kg and a radius of gyration of 0.3 m. The engine rotates at 2400 rpm in CW direction, when viewed from the rear. Find the gyroscopic couple on the aircraft and state its effect on it. Explain your answer with proper diagrams.

10M 3 3

OR

Q.4(B) In an epicyclic gear train, an arm carries two gears A and B having 36 and 45 teeth respectively. If the arm rotates at 150 r.p.m. in the anticlockwise direction about the centre of the gear A which is fixed, determine the speed of gear B. If the gear A instead of being fixed, makes 300 r.p.m. in the clockwise direction, what will be the speed of gear B?

10M 3 3

Q.5(A) Construct the profile of a cam to suit the following specifications: Cam shaft diameter = 40 mm; Least radius of cam = 25 mm; Diameter of roller = 25 mm; Angle of lift = 120°; Angle of fall = 150°; Lift of the follower = 40 mm; Number of pauses are two of equal interval between motions. During the lift, the motion is S.H.M. During the fall the motion is uniform acceleration and deceleration. The speed of the cam shaft is uniform. The line of stroke of the follower is off-set 12.5 mm from the centre of the cam.

10M 4 4

Q.5(B) Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 kg respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively and the angles between successive masses are 45°,75° and 135°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.2 m.

OR

10M 4 3

Q.6(A) For the vibratory systems shown in the figure, take mass m=10 kg, $k_1=5$ N/mm, and $k_2=8$ N/mm. Determine the natural frequency for both the cases.

10M 5

3

(b) k₁

OR

Q.6(B) The following data are given for a vibratory system with viscous damping:

Mass = 2.5 kg; spring constant = 3 N/mm and the amplitude decreases to

0.25 of the initial value after five consecutive cycles. Determine the
damping coefficient of the damper in the system.

10M 5 3

*** END***

Hall Ticket No:										Question Paper Code: 20ME108
-----------------	--	--	--	--	--	--	--	--	--	------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –AUGUST 2022 MANUFACTURING TECHNOLOGY - 1

(Mechanical Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. What is the difference between true and semi centrifugal casting?	1M	1	1
	ii. Why are patterns made slightly oversized than the required casting?	1M	1	1
	iii. Give one advantage and one disadvantage of die casting.	1M	1	1
	iv. What is the difference between brazing and soldering?	1M	2	2
	v. Why are inert gases used as shielding gases in TIG and MIG welding? Name two shielding gases	1M	2	1
	vi. What is the general arrangement for die set?	1M	3	1
	vii. Mention the defects in drawing operation.	1M	4	1
	viii. What are the different types of rolling operation?	1M	4	1
	ix. Define angle of repose in powder metallurgy process.	1M	5	1
	x. What is screen mesh in powder metallurgy process?	1M	5	1
Q.2(A)	What is the difference between cold chamber pressure die casting and hot chamber pressure die casting? Explain in details the working principle of gravity die casting and hot chamber pressure die casting with neat diagrams. OR	10M	1	2
Q.2(B)	What are the probable reasons behind defective castings? Explain 5 casting defects in details.	10M	1	2
Q.3(A)	What is the basic difference between a TIG welding and MIG welding? Explain the working principle of both welding with neat diagrams. OR	10M	2	1
Q.3(B)	Explain the working principle of submerged arc welding and Friction stir welding with neat diagrams.	10M	2	2
Q.4(A)	Mention the application of press working and explain the working of hydraulic press with suitable figure.	10M	3	1
	OR			
Q.4(B)	Describe the characteristics of sheet metal and differentiate between hydro forming and super plastic forming.	10M	3	1
Q.5(A)	What is extrusion? Explain hot and cold extrusion in details. OR	10M	4	:
Q.5(B)	What is forging? What is the difference between open die forging and closed die forging? Explain upset forging with a neat diagram.	10M	4	:
Q.6(A)	Explain the process of atomization in powder metallurgy process. OR	10M	5	
Q.6(B)	How a powder metallurgy product is produced and explain it?	10M	5	

Hall Ticket No:	- 5				Question Paper Code: 20MAT108
man monce mon					and the state of t

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 PROBABILITY & STATISTICS

(Mechanical Engineering)

Time: 3Hrs

Max Marks: 60

Q.No		Question									Marks	CO	BL
Q.1	i. Define axiomatic definition of probability?									1M	1	1	
	ii,	The densi	ty for X is	given b	y f(x)	=kx,0	$\leq x \leq x$	5. Find t	he value	of k .	1M	1	1
	iii.	X is the b	inomial va	ariate w	ith para	meters	n= 15 a	nd p = 0	.2 find va	ariance	1M	2	1
		of X			n ive								
	iv	Let X be a	Gamma	random	n variab	le with	$\alpha = 3, \mu$	3 = 4.	Find varia	ince of	1M	2	1
		X?					ш						
	٧.	Define Ha	zard rate	function	n.						1M	3	1
	vi	Write the	condition	for inde	epende	nce of r	andom	ariable.	s?		1M	3	1
	vii.		rrelation c								1M	4	1
	viii.	Write the	t – statist	ic for or	ne samp	ole mea	n?				1M	4	1
	ix.		the assum								1M	5	1
	х.		vn the bas				nental d	esign?			1M	5	1
Q.2(A)		mputer ce							rint at di	fferent	10M	1	3
٠, ١, ١,		ds. Progran						-				- 1	_
		•						· · · · · · · · · · · · · · · · · · ·					
	program is routed to printers A, B and C are 0.6, 0.3 and 0.1 respectively. Occasionally a printer will jam and destroy the printout. The probability that												
	printers A, B and C will jam are 0.01, 0.05 and 0.04 respectively. Your program is												
	destroyed when a printer jams. What is the probability that printer A is												
			n a britii	er jains	s. vvna	r is the	a propa	onity tr	iai oninii	=1 🖰 13			
		•		-				onity tr	iat printe	EI A 13			
		ved? Printe		-		volvedi	?	onity tr	iat printe	EI A 13			
	invol	ved? Printe	er B involve	ed? Prir	nter C in	volved? OF	?				10M	1	. 3
	invol A dru	ved? Printe	er B involve co maintai	ed? Prin	nter C in ady hea	volved: OF rt rate	? R in patier	its who	have suf	fered a	10M	1	3
	invol A dru mild	ved? Printe ug is used t heart attac	er B involve co maintai	ed? Prin	nter C in ady hea	volved: OF rt rate	? R in patier	its who	have suf	fered a	10M	1	3
0.2/8)	invol A dru mild	ved? Printe ug is used t heart attac patient	er B involve o maintai k. Let X de	ed? Prir in a stea enotes t	nter C in ady hea the num	ovolved? OF rt rate interior of the second s	? R in patier neart be	nts who ats per i	have suf minute ol	fered a	10M	1	3
Q.2(B)	invol A dru mild	ug is used the heart attace to the work of	er B involver B involv	ed? Prir in a stea enotes t	nter C in ady hea the num	ovolved? OF rt rate in the of the of the of the original of the original of the original orig	R in patier heart be	nts who ats per i	have suf minute ol	fered a	10M	1	3
Q.2(B)	invol A dru mild per p	wed? Printer ug is used to the art attacont in the second in the secon	er B involvers B i	ed? Prir in a stea enotes t 60 0.04	nter C in ady hea the num 68 0.05	ovolved? OF rt rate in the result of the res	in patier heart be	ats who ats per i	have sufminute ol	fered a otained	10M	1	3
Q.2(B)	A drumild per p	wed? Printer ug is used to the heart attack to the term of the t	er B involver B invol	ed? Prining a steadenotes to 60 0.04 (ii) I	nter C in ady hea the num 68 0.05 Distribu	ovolved? OF rt rate in the result of the res	in patier heart be	ats who ats per i	have sufminute ol	fered a otained	10M	1	3
Q.2(B)	A drumild per p	wed? Printer ug is used to the art attacont in the second in the secon	er B involver B invol	ed? Prining a steadenotes to 60 0.04 (ii) I	nter C in ady hea the num 68 0.05 Distribu	ovolved? OF rt rate in the result of the res	in patier heart be	ats who ats per i	have sufminute ol	fered a otained			
Q.2(B) Q.3(A)	A dry mild per p	wed? Printer ug is used to the art attack to the continuous $f(x)$ the (i) $f(x)$ moment	er B involve to maintai k. Let X de 40 60.01 $08 \le X \le 7variance$	ed? Prining a steamotes to the steamotes	ady hea the num 68 0.05 Distribut beats.	ovolved? OF rt rate in the proof to the proo	in patier heart be 72 0.05	80 0.04 i) avera	have sufminute of 100 0.01 ge heart-	fered a otained beat of	10M	2	3
	A dry mild per p	wed? Printer ug is used to the art attack to the art attack to the function $\frac{x}{f(x)}$ the (i) $p(68)$ coatients (iv)	er B involve to maintai k. Let X de 40 60.01 $08 \le X \le 7variance$	ed? Prining a steamotes to the steamotes	ady hea the num 68 0.05 Distribut beats.	ovolved? OF rt rate in the rat	in patier heart be 72 0.05 nction (ii	80 0.04 i) avera	have sufminute of 100 0.01 ge heart-	fered a otained beat of			
	A dromild per	ved? Printer ug is used to heart attack to be attent $ x $	er B involve to maintal ck. Let X de 40 60.01 $08 \le X \le 7variance ofgenerating$	ed? Printin a steatenotes to 60 0.04 2) (ii) I of heart	ady hea the num 68 0.05 Distribut beats.	ort rate in the state of the st	reart be 72 0.05 nection (iii	80 0.04 i) avera	have sufminute of the l	fered a otained beat of	10M		
	A dromild per	wed? Printer ug is used to the art attack to the attent x $f(x)$ the (i) $p(68)$ coatients (iv) moment ibution?	er B involved to maintain the Let X decreased $40 - 60$ $0.01 - 0.01$ $0.01 - 0.01$ variance of generating the fast	in a steamotes to the steamond of heart string bloods.	ady heathe num 68 0.05 Distribut beats.	ort rate in the ra	72 0.05 and var	80 0.04 i) avera	have sufminute of the lassumed	fered a otained beat of Poisson to be			3
Q.3(A)	A dromild per	ved? Printer ug is used to heart attack to be attent $ x $	er B involved to maintain the Let X decreased $40 - 60$ $0.01 - 0.01$ $0.01 - 0.01$ variance of generating the fast	in a steamotes to the steamond of heart string bloods.	ady heathe num 68 0.05 Distribut beats.	ort rate in the ra	72 0.05 and var	80 0.04 i) avera	have sufminute of the lassumed	fered a otained beat of Poisson to be	10M	2	3
Q.3(A)	A drumild per	wed? Printer up is used to heart attact the fact that $f(x)$ the (i) $f(x)$ moment ibution? In diabetic eximately grams.	er B involves to maintai ck. Let X de 40 6 0.01 0 $8 \le X \le 7$ variance of generating c, the fast normally	ed? Printing a steamotes to the steamont of the string blood distribution of the string blood distr	ady heathe num 68 0.05 Distribut beats. ction, in ood glu ited wi	ort rate in the ra	72 0.05 nction (ii	80 0.04 i) avera	have sufminute of the lassumed ms and s	fered a otained beat of Poisson to be S. D. 8	10M	2	3
Q.3(A)	A drumild per	wed? Printer ug is used to the art attack to the art attack to the continuation of t	er B involvence of maintains. Let X decay $40 - 60$ $0.01 - 0.01$ 0.01	ed? Printing a steamotes to the steamond of the art of the string bloodstributh bility the string bloodstributh the strin	ady heathe num 68 0.05 Distribut beats. ction, in	ort rate in the ra	72 0.05 nction (iii	80 0.04 i) avera	have sufminute of the lassumed ms and s	fered a otained beat of Poisson to be S. D. 8	10M	2	3
Q.3(A)	A drumild per	wed? Printer ug is used to heart attack the patient x $f(x)$ the (i) $p(6x)$ coatients (iv) moment ibution? ung diabetic oximately grams. a) Find to glucos	er B involvence of maintain the Let X decreased and t	ed? Printing a steep of the art of the art of the distribution of the art of the distribution of the art of th	ady heathe num 68 0.05 Distribut beats. ction, in	ort rate in the ra	72 0.05 nction (iii	80 0.04 i) avera	have sufminute of the lassumed ms and s	fered a otained beat of Poisson to be S. D. 8	10M	2	3
Q.3(A)	A drumild per	wed? Printer ug is used to heart attack the patient x $f(x)$ the (i) $p(6x)$ coatients (iv) moment ibution? ung diabetic oximately grams. a) Find to glucos	er B involvence of maintains. Let X decay $40 - 60$ $0.01 - 0.01$ 0.01	ed? Printing a steep of the art of the art of the distribution of the art of the distribution of the art of th	ady heathe num 68 0.05 Distribut beats. ction, in	ort rate in the ra	72 0.05 nction (iii	80 0.04 i) avera	have sufminute of the lassumed ms and s	fered a otained beat of Poisson to be S. D. 8	10M	2	
Q.3(A)	A drumild per	ug is used theart attactoatient x	er B involvence of maintains. Let X decided by the second	ed? Printing a steamotes to the sting blood distribution bility the tween to the sting blood bility the stween to the state that the stween to the state the stween to the state thad the state the state the state the state the state the state th	ady heathe num 68 0.05 Distribut beats. ction, in ood glusted with at rand 90 and	ort rate in the ra	72 0.05 nction (iii	80 0.04 i) avera	have sufminute of the lassumed ms and summer will have	fered a otained beat of Poisson to be S. D. 8	10M	2	3

Let X be a Weibull random variable with parameters α and β . Show that the Q.4(A) mean and variance of X are given by $\mu = \alpha^{-\frac{1}{\beta}} \Gamma \left(1 + \frac{1}{\beta} \right)$ and $\sigma^2 = \alpha^{-\frac{2}{\beta}} \Gamma \left(1 + \frac{2}{\beta} \right) - \mu^2.$ Assume that the joint density for (X, Y) is given by 10M Q.4(B) $f_{X,Y}(x,y) = c$; 20 < x < y < 40(a) Find the value of 'c' that makes this a joint density for a twodimensional random variable. (b) Find the marginal densities for X and Y. (c) Find $P(X \ge 25)$ (d) Are X and Y independent? Find the correlation co-efficient between X and Y from the given data: Q.5(A) 10M 78 97 69 59 79 68 57 125 137 156 112 107 138 123 108 У OR

68.55 inches and a standard deviation of 2.52 inches. Do the data indicate that the sailors are on the average taller than soldiers?

Q.6(A) A study on the tensile strength of aluminum rods is conducted. Forty identical rods are randomly divided into four groups, each of size 6. Each group is subjected to a different heat treatment, and tensile strength, in thousands of pounds per square inch., of each of rod is determined. The following data

A sample of height of 6400 soldiers have a mean of 67.85 inches and a standard

deviation of 2.56 inches while a sample of heights of 1600 sailors has a mean of

result:

Q.5(B)

Treatment						
1 1	2	3	4			
18.9	18.3	21.3	15.9			
20.0	19.2	21.5	16.0			
20.5	17.8	19.9	17.2			
20.6	18.4	20.2	17.5			
19.3	18.8	21.9	17.9			
19.5	18.6	21.8	16.8			

Test the null hypothesis of homogeneity of treatment means.

OR

Q.6(B) The design given in the following table is called a knight's move Latin square because one can get from each treatment type to another of the same type by making a knight's move as in the game of chess. The observed responses are given in parentheses in the table. Analyse the design at the $\alpha=0.05$ level.

10M	5	

3

	1	II	- m	IV
	A(3)	B(4.2)	C(0.9)	D(5.3)
Ш	C(1.0)	D(5.6)	A(3.8)	B(4.3)
III	B(4.5)	A(3.5)	D(5.7)	C(1.2)
IV	D(5.5)	C(0.8)	B(3.9)	A(3.7)

*** END***

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – August 2022 CONTROL SYSTEMS ENGINEERING

(ECE)

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.N	Ó	Question	Marks	CO	BL
Q.1	i.	Why negative feedback is invariably preferred in closed loop system?	1M	1	1
	ii.	Distinguish between open loop system and closed loop system	1M	1	2
	jii.	What is the effect of positive feedback on stability of a system?	1M	2	1
	iv	Define time constant of a first order system with suitable transfer	1M	2	1
	3.1	function. Define controller and list types of controller.	1M	3	1
	v. vi	What is lead lag compensator?	1M	3	1
	vii.	List frequency domain specifications.	1M	4	1
	viii.	Define Phase Margin and Gain Margin	1M	4	1
2	ix.	What is the significance of state transition matrix?	1M	5	1
	х.	State advantage of static space analysis.	1M	5	1
Q.2	Con	vert the block diagram to signal flow graph and determined the	10M	1	3
•		of an function using Mason's gain formula			

OR

Q.2(B) Sketch the free body diagram and draw the current analogous electrical 10M 1 3 circuits of the system shown in below figure

Q.3(A) Explain briefly the effects of PI controller and PID controller on system performance with suitable block diagram.

10M

Q.3(B)	Derive the expressions for unit step response for the second order system.	10M	2	6
Q.4(A)	A unity negative feedback control system has an open loop transfer	10M	3	3
	function as $G(s) = \frac{K}{S(S+2)(S+4)}$. Sketch the root locus and find the			
	value of K corresponding to crossing point on imaginary axis			
O.4(B)	Determine the range of K for stability of unity feedback system whose	10M	3	3
Z(2)	open loop transfer function is $G(s) = \frac{K}{S(S+1)(S+2)}$.			
Q.5(A)	$G(s) = \frac{10}{s(1+0.1s)(1+0.4s)}$	10M	4	3
	A unity reedback control system has			
	Draw Bode plot and comments on Stability. OR			
Q.5(B)	The open loop transfer function of a unity feedback system	10M	4	3
	is $G(s) = \frac{1}{s(1+s)(1+2s)}$. Sketch the polar plot and determine the gain			
	margin and phase margin.			
Q.6(A)	Discuss concept of observability. Evaluate the observability of the system.	10M	5	5
	$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t)$			
	and $Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$			
	OR			
Q.6(B)	Write any two properties of state transition matrix. Find the state transition matrix for	10M	5	3

$$A = \begin{bmatrix} +2 & -3 \end{bmatrix}$$
*** END***

Hall Ticket No:			-								Question Paper Code: 20ECE105
-----------------	--	--	---	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – August 2022 PRINCIPLES OF SIGNALS AND SYSTEMS

(ECE)

Time: 3Hrs Max Marks: 60

Q.N	Question	Marks	со	BL
Q.1	i. What are the classification of system?	1M	1	1
	ii. Sketch the Continuous time signal given by $x(t) = 4u(t+4) - u(t) - 5u(t-2) + 2u(t-5)$	1M	1	1
	iii. Identify whether the system $y(t) = x(\frac{t}{2})$ is causal or not.	1M	2	4
	iv Define sampling theorem.	1M	2	2
	v. Explain the time shifting property of Fourier transform.	1M	3	2
	vi Find the Fourier transform of $e^{-\alpha t}u(t)$.	1M	3	2
	vii. Define ROC in Laplace transform.	1M	4	1
	viii. What is the Laplace transform of $te^{-at}u(t)$?	1M	4	1
	ix. Explain region of convergence for Z-transform	1M	5	2
	x. List the two types of Z transform?	1M	5	4
Q.2(A)	(i) Sketch the following signals	5M	1	3
	(a) $u(t) - u(t-2)$ (b) $r(-0.5t+2)$			
	ii) Find the even and odd part of the signal given by $x(t) = e^{jwt}$	5M	1	3
	OR .			
Q.2(B)	Define and sketch the following elementary continuous time signals.	10M	1	1
	(i) Unit impulse signal (b)Unit step signal			
	(ii) Unit ramp signal (d) Rectangular pulse signal			
	(iii) Sampling signal			
Q.3(A)	(i) Find the impulse response h[n] for the causal LTI discrete-time system described by the difference equation	8M .	2	3
	$y[n] = \frac{1}{2}y[n-2] + 2x[n] - x[n-2]$			
	(ii) State and prove any two properties of LTI systems. OR	2M	2	3
Q.3(B)	Use graphical method to find out the convolution of two sequences $x_1(n) = \{1,-4, 2,3\}$ and $x_2(n) = \{1,-2,3,-1\}$.	10M	2	3
Q.4(A)	Identify the Fourier transform of the gate function shown in figure. Also, plot the magnitude response.	10M	3	3

OR

Q.4(B)	Find the trigonometric Fourier series for half wave rectified sine wave.	10M	3	1
Q.5(A)	(i) Discuss about Initial value theorem and Final value Theorem of Laplace transform.	6M	4	6
	(ii) Find out the Laplace transformation of the signal given by $x(t)=3e^{-2t}u(t)-2e^{-t}u(t)$.	4M	4	1
	OR			
Q.5(B)	(i) Discuss the properties of Laplace-transform.	6M	4	3
	(ii) Find the inverse Laplace-transform of $X(s) = \frac{1}{s(s+1)^2(s+2)}$.	4M	4	3
Q.6(A)	(i) Explain the Convolution, Time reversal and Differentiation properties of Z-Transform.	6M	5	2
	(ii) Find the Z-Transform if x(n)=2 ⁿ for n≤0 and = 0 for n>0	4M	. 5	3
	OR			
Q.6(B)	Find the inverse Z-transform of $X(z) = \frac{z(z+3)}{(z-1)(z-2)(z-3)}$	10M	5	3
	(a) z > 3, $(b)2 < z < 3$.		15	

Hall Ticket No: Question Paper Code: 20EC

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – August 2022 ANALOG CIRCUITS

(ECE)

Time: 3Hrs Max Marks: 60

Q.Ne	Question	Marks	со	BL
Q.1	i. Should CMRR of a differential amplifier be a large or a small number? Why?	1M	1	3
	ii. What is cross-over distortion in class-B push-pull amplifier?	1M	1	1
	iii. In an amplifier, feedback causes a decrease in the input resistance and an increase in the output resistance. Identify the amplifier	1M	2	3
	iv Illustrate Barkhausen criteria for sustained oscillation.	1M	2	1
	v. An op-amp has a differential voltage gain of 100,000 and a common-mode gain of 0.2. Determine and CMRR and express it in dB.	1M	3	3
	vi Construct the circuit of a difference amplifier	1M	3	1
	vii. What is the primary advantage of a Schmitt trigger circuit compared to a comparator?	1M	4	1
	viii. All-pass filter passes all the frequency components. Why is it then used?	1M	4	1
	ix. What is meant by astable and monostable multivibrators?	1M	5	1
	x. What is the O/P voltage for IC-7912?	1M	5	: 1
Q.2(A)	Construct the circuit diagrams of modified MOSFET current mirror circuits and compare its output resistance with that of basic current mirror	10M	1	2
	OR			
Q.2(B)	Explain the working of class-A power amplifier and obtain the power efficiency	10M	1	5
Q.3(A)	(i) Estimate the overall gain of negative feedback amplifier. Also write the advantage and drawback of negative feedback amplifier.	6M		2
		4M	2	
	(ii) With a negative voltage feedback, an amplifier gives an output of 10 V with an input of 0.5 V. When feedback is removed, it requires 0.25 V input for the same output. Evaluate feedback factor.		-	4
Q.3(B)	OR Sketch the circuit of an RC phase shift oscillator. Explain its working and derive the expression for oscillation frequency.	10M	2	3
Q.4(A)	Analyze the inverting and non-inverting configuration of op-amp with neat circuit diagram.	10M	3	3
	OR			
Q.4(B)	Build the circuit of an integrator and differentiator using an op-amp and derive an expression for output voltage in each case.	10M	* 3	3
	Page 1 of 2			

Q.5(A)	(i) Construct the circuit of an active band-pass filter. Explain its operation and frequency response curve.	10M	4	2
	(ii) Explain the operation of a comparator. What is its drawback and how it can be eliminated?			2
	OR			
Q.5(B)	Build the circuit of a logarithmic and antilogarithmic amplifier using an op-amp and derive an expression for output voltage.	10M	4	3
Q.6(A)	Elaborate the working of an astable multivibrator using 555 timer with a	10M	1	
	neat functional block diagram and waveforms. Derive the expression for output frequency.		5	3
	OR			
Q.6(B)	(i) Briefly explain the operation of voltage controlled oscillator.	5M		3
	(ii) Design a PLL and analyze the function of each component	5M	5	3

Hall Ticket No: Question Paper Code: 20ECE	Question Paper Code: 20ECE107
--	-------------------------------

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE (UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – August 2022
MICROPROCESSORS AND MICROCONTROLLERS

(ECE)

Time: 3Hrs

Max Marks: 60

Q.N	Question	Marks	со	BL
Q.1	i. What is the function of EU in 8086?	1M	1	1
	ii. List the special purpose registers in 8086.	1M	1	1
	iii. Write the modes of operation of 8255 PPI	1M	2	1
	iv What is the use of HOLD and HLDA in DMA?	1M	2	1
	v. List the features of 8051 microcontroller.	1M	3	1
	vi Write differences between microprocessors and microcontrollers.	1M	3	1
	vii. What is the difference between ARM7 and ARM9 in terms of architecture?	1M	4	1
	viii. What are the processor modes of ARM microcontrollers?	1M	4	1
	ix. Write the stepping sequence of stepper motor under full-drive mode	1M	5	1
	x. Write HAL instructions to toggle port C pin 5 of the STM32 microcontroller, for every 2 seconds.	1M	5	2
Q.2(A)	Explain the different types of addressing modes in 8086 in detail.	10M	1	2
	OR			3
Q.2(B)	Define Assembler directives and explain with suitable examples.	10M	1	2
Q.3(A)	In an 8086-microprocessor based system it is required to interface 32KB of RAM and the starting address is 2000:0000H. By analyzing the specification, design an appropriate memory interface diagram. OR	10M	. 2	4
Q.3(B)	Explain the various modes of operation of 8254-PIT with suitable diagram.	10M	2	2
Q.4(A)	Draw the architecture of 8051 microcontroller and explain.	10M	3	2
	OR			
Q.4(B)	Explain following registers 1)B register 2)DPTR 3)Accumulator 4)SBUF	10M	3	2
Q.5(A)	Write ARM assembly code for the following C assignment. x = (a + b) - c;	10M	4	3
	OR			
Q.5(B)	Explain the various RISC pipeline mechanism of ARM microcontrollers	10M	4	2
Q.6(A)	Develop an 8051-assembly language program to control the traffic sequence on a 4-way road crossing. Each side should have signals for green, amber, red and pedestrian crossing.	10M	_z 5	3
Q.6(B)	OR Construct the 8-bit DAC interface with 8051 microcontroller and develop an assembly language program to generate a square wave. *** END***	10M	5	3

Hall Ticket No:	-17	×					Question Paper Code: 20MAT109
				in l			

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics & Communication Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	Bl
2.1	i. Define axiomatic definition of probability?	1M	1	1
	Total Table 1 and	ind 1M	1	1
	$p(A \cup B) = 0.8$. Are A and B to be independent?	²); 1M	2	1
	iii. A continuous random variable X having density function $f(x) = k(1-x^2)$ $0 \le x \le 1$. Find the value of the constant k ?), 1101	2	1
	iv Express the density function for Rayleigh distribution?	1M	2	1
	v. If joint p.d.f of X and Y is $f_{X,Y}(x,y) = kxy$; $0 < x < 1$ and $0 < y < 2$ then	1 1M	3	1
	find the value of k	1M	3	
	vi Define Covariance between two random variables (X,Y)			
	vii. Variances $\sigma_X^2 = 6$ and $\sigma_Y^2 = 9$; correlation coefficient $\rho_{XY} = -2/3$ F	ind ^{1M}	4	-
	the covariance C_{XY}	1M	4	
	viii. Write a condition for WLLNs? ix. Define the autocorrelation function?	1M	5	
	ix. Define the autocorrelation function? x. Define the power spectral density?	1M	. 5	
	 0.55 (line two). Each line can overfill or under fill bottles by at most 2 pills. Give that line one is observed, the probabilities are 0.02, 0.06, 0.88, 0.03 and 0.01 to the numbers of pills in a bottle will be 102, 101, 100, 99 and 98 respectively. line two the similar probabilities are 0.03, 0.08, 0.83, 0.04 and 0.02. a). Find the probability that a bottle of the product will contain 102 pills. Repletor 101, 100, 99 and 98 pills. b). Given that a bottle contains the correct number of pills, what is the Probability it came from line one? 	hat For		
	OR		1	
	(i) In a communication system the signal sent from point <i>a</i> to point <i>b</i> arrives two paths in parallel. Over each path the signal passes through two repeaters	i (in	1	
a 2(p)	series). Each repeater in one path has a probability of failing (becoming an opericular) of 0.005. The probability is 0.008 for each repeater on the other path repeaters fail independently of each other. Find the probability that the significant series at point b?	. All gnal		
Q.2(B)	(ii) A rifleman can achieve a "marksman" award if he passes a test. He is allowed to fire six shots at a target's bull's eye. If he hits the bull's eye with at least five his six shots he wins a set. He becomes a marksman only if he can repeat the	e of 5M		
	three times straight. i.e. if he can win three straight sets. If his probability is 0.4 hitting a bull's eye on any one shot, find the probabilities of his (a) winning a and (b) becoming a marksman.	8 of		

	Title Polytic 20 140 Polytic 20			
	Find (a) $P(X >2)$ and (b) $P(X>2)$. (ii) In a certain Junior Olympics, a contestant throw distances are well approximated by a Gaussian distribution for which $a_X=30m$. In a qualifying	5M		
	round, contestants must throw farther than $26m$ to qualify. In the main event the record throw is $42m$. (a) What is the probability of being disqualified in the qualifying round? (b) In the main event what is the probability the record will be broken? OR			
Q.3(B)	Show that the mean value and variance of the random variable having the	10M	2	4
	uniform density function are: $\overline{X} = E(X) = \frac{b+a}{2}$ and $\sigma_X^2 = \frac{(b-a)^2}{12}$			
Q.4(A)	Given the function $f_{X,Y}(x,y) = b(x^2 + 4y^2)$; $0 \le x < 1$ and $0 \le y < 2$.	10M	3	3
	(a) Find the constant b such that this is a valid joint density function. (b) Determine the marginal density functions $f_X(x)$ and $f_Y(y)$.			
Q.4(B)	Two random variables X and Y are related by the expression $Y = aX + b$; where a and b are any real numbers.	10M	3	4
	(b) Show that their covariance is $C_{X,Y}^{}=a\sigma_X^2$			
Q.5(A)	State and Prove Chebychev's inequality?	10M	4	3
Q.5(B)	Gaussian random variables X_1 and X_2 for which $\overline{X_1} = 2$, $\sigma_{X_1}^2 = 9$, $\overline{X_2} = -1$,	10M	4	4
	$\sigma_{X_2}^2=4 \text{ and } C_{X_1X_2}=-3 \text{ are transformed to new random variables } Y_1 \text{ and } Y_2$ according to $Y_1=-X_1+X_2, Y_2=-2X_1-3X_2$. Find (a) $\overline{X_1^2}$ (b) $\overline{X_2^2}$ (c) $\rho_{X_1X_2}$ (d) $\sigma_{Y_1}^2$ (e) $\sigma_{Y_2}^2$ and (f) $C_{Y_1Y_2}$			
Q.6(A)	A random process is defined by $Y(t) = X(t) \cos(w_0 t + \theta)$ where $X(t)$ is a wide sense stationary random process that amplitude-modulates a carrier of constant angular frequency w_0 with a random phase θ independent of $X(t)$ and uniformly distributed on $(-\pi,\pi)$ (a) Find $E(Y(t))$ (b) Find the auto	10M	5	3
	correlation function of $Y(t)$ (c) Is $Y(t)$ wide sense stationary?			
Q.6(B)	OR Find the autocorrelation function and spectral density function of a random	10M	5	3
	process $X(t) = A\cos(\omega_o t + \Theta)$ where Θ a random variable is over the ensemble and is uniformly distributed over the interval $(0,2\pi)$. Also find the average power?			

Page 2 of 2

lall Ticket No:				Question Paper Code: 20CST104

(UGC-AUTONOMOUS)

B. Tech II Year II Semester (R20) Regular End Semester Examinations - August 2022 **COMPUTER ARCHITECTURE**

(CST)

Time: 3Hrs

Max Marks: 60

		Moules	60	ומ
Q.No		Marks 1M	co	BL 1
Q.1	i. Sketch the Memory hierarchy pyramid.	1M	1	1
	ii. State Moore's law. iii. List the various MIPS Instruction Formats.	1M	3	2
		1M	3	1
	iv Which two algorithms are used for signed multiplication?	1M	2	2
	v. Distinguish between exception and Interrupt.	1M	4	1
	vi What are the hazards? Write its types.	1M	4	1
	vii. Define the term Instruction level parallelism.	1M	4	1
	viii. What is meant by hardware multithreading?	1M	5	1
	ix. What do you mean by principle of locality in memory hierarchy?		5	1
	x. List the different cache mapping techniques.	1M		_
Q.2(A)	What are the various Instruction formats available in MIPS architecture,	10M	1	1
	give atleast one instruction examples for each type.			
	OR			100
Q.2(B)	What is an addressing mode? Explain the various MIPS addressing modes	10M	2	2
	with figures.			**********
Q.3(A)	i) Explain the Booth's Multiplication Algorithm with the help of a	5M	3	4
	flowchart.			
	ii) Multiply 13 x -13 using Booth's Multiplier.	5M		
	OR			
Q.3(B)	i) Illustrate the process of restoring division, with the help of a flowchart.	5M	3	4
J (-)	ii) Divide 11 by 2 using Restoring division algorithm.	5M		
Q.4(A)	What is data path and control logic? Discuss about building a data path	10M	2	2
Q.4(A)	for MIPS with neat diagrams.			
	OR			
O 4(B)	Discuss the data hazards and forwarding in pipelining.	10M	4	2
Q.4(B)	Discuss the data hazards and forwarding in piperining.	10111		
Q.5(A)	Explain in detail with necessary diagrams the Flynn's classification of	10M	4	2
	parallel hardware.			
	OR			
Q.5(B)	Discuss the principle of hardware multithreading and elaborate its types.	10M	4	2
Q.6(A)	i) Discuss briefly about the various Memory Mapping Techniques.	4M	5	3
-211	ii) Consider a direct mapped cache with a block size of 4 KB. The main	6M		
	memory size is 16 GB, with 10 bits in the tag.			
	Find a) Size of cache memory b) Tag directory size			
	OR			
Q.6(B)	What is virtual memory? Explain virtual memory with a neat diagram.	10M	5	2
رر.٥(٢)				
	*** END***			

Hall Ticket No:						Question Paper Code: 20CST105

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 NETWORK AND COMMUNICATION

(Computer Science & Technology)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. What is the Data Representation in computer network?	1M	1	1
	ii. Differentiate the simple duplex and Full duplex.	1M	1	1
	iii. Define IEEE 802.3.	1M	2	1
	iv What is meant by Bluetooth Low Energy?	1M	2	1
	v. Define Multicast routing.	1M	3	1
	vi State the purpose of IPv6 with respect to IPv4.	1M	3	2
	vii. Mention the use of TCP protocol in transport layer.	1M	4	2
	viii. How congestion control is applied on transport layer.	1M	4	2
	ix. Define Peer to Peer Networks.	1M	5	1
	x. What is use of firewalls?	1M	5	2
Q.2(A)	Describe the various layers of OSI model with neat sketch.	10M	1	3
	OR			
Q.2(B)	Explain the core concept of check sum error detection and Hamming	10M	1	3
- 19	code error correction method with example.	4014		
Q.3(A)	Explain the network layer protocols with adequate block diagram.	10M	2	2
	OR	1004		•
Q.3(B)	Discussthe factors to be considered to build the Bluetooth.	10M	2	2
Q.4(A)	Differentiate the purpose of unicast and multicast routing protocols with	10M	3	3
	example.			
	OR	1004	3	3
Q.4(B)	Differentiate the Intradomain and Intradomain protocols with appropriate example.	10M	5	3
Q.5(A)	Explain in detail about congestion avoidance methods of DECbit and	10M	4	2
Q.3(A)	RED.	Α		
	OR OR			
Q.5(B)	Discuss about Token Leaky bucket algorithm with a neat diagram.	10M	4	2
		4084		
Q.6(A)	Explain about DNS, working of WWW and HTTP.	10M	5	3
	OR			
Q.6(B)	Determine the need for cryptography and network security in	10M	5	2
Q.0(B)	application layer.			
	*** END***			
	2.13			

Hall Ticket No:	h					Question Paper Code: 20CST106

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 OBJECT ORIENTED PROGRAMMING USING JAVA

(Computer Science & Technology)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	СО	BL
Q.1	i. How many primitive data types are available in java? List them,	1M	1	1
~	ii. Differentiate == and equals() method on Strings.	1M	1	4
	Write the differences between method overloading and method overriding.	1M	2	1
	What is an interface? What are the possible contents of the interface?	1M	2	1
	v. How checked exceptions are different from unchecked exceptions?	1M	3	1
	vi What are the different ways to achieve synchronization in java?	1M	3	4
	vii. What is Event Listener?	1M	4	1
	viii. Differentiate Byte and Character stream.	1M	4	4
	ix. Write a Syntax for creating a button.	1M	5	1
	x. What is the use of f.setTitle().	1M	5	1
Q.2(A)	(i)Compare and contrast Procedure oriented programming and object oriented programming.	10M	1	4
	(ii)What are Object Oriented Principles? Explain in detail about each principle?			1
	OR	10M	1	3
(-)	(i) Develop a Java program that demonstrates the usage of various	10141	-	J
Q.2(B)	bitwise operators. (ii) Define Constructor and explain in detail about Constructer types.			- 2
		10M	2	3
Q.3(A)	(i) How does java support Runtime Polymorphism? Give an example. (ii) Develop a java program that demonstrates the usage of "super" Keyword in java.	10141	2	,
	OR			
Q.3(B)	(i) What is package? How to create a user defined package in java. Give a suitable example?	10M	2	1
	(ii) When a class hierarchy is created? In what order the constructors are called? Give an example?			
Q.4(A)	(i) Draw a neat sketch for life cycle of thread. Explain each state of thread.(ii) Write a program to demonstrate creation of multiple threads in JAVA.	10M	3	6
	OR	10M	3	:
Q.4(B)	(i) How to catch Multiple exceptions in java? Give an example?(ii) Illustrate the usage of "finally" keyword in exception handling. Give anexample?	TOIAI	3	2

Q.5(A)	(i) Explain in detail about adaptor class with an example?	10M	4	2
	(ii) Discus about Event Delegation Model (EDM).			6
	OR			
Q.5(B)	What is the use of Event Listener? List out Event Listeners and their methods. Explain the role of Event Listeners in Event Handling mechanism with an example.	10M	4	2.
Q.6(A)	Draw the Java AWT Hierarchy and explain in detail.	10M	5	6
	OR			
Q.6(B)	Write a JAVA program for AWT Example by Inheritance.	10M	5	6
	*** END***			

łall Tick	et No: Question Paper Co	ode: 20CST10	07	
	DANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, N (UGC-AUTONOMOUS) II Year II Semester (R20) Regular End Semester Examinations			
	OPERATING SYSTEMS			
Tim	(Computer Science & Technology)	Max Ma	rks: 60	
	Attempt all the questions. All parts of the question must be answered in or All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A o	ne place only.	2007/2007	
Q.No	Question	Marks	со	BL
Q.1	i. List the four major components of computer system.	1M	1	1
	ii. Summarize the functions of DMA.	1M	1	1
	iii. Define Process.	1M	1	1
	iv Define critical section?	1M	2	1
	v. Define non- preempt able resource.	1M	2	1
	vi Define Thrashing.	1M	4	1
	vii. Differentiate base and limit.	1M	4	1
	viii. What is swapper?	1M	4	1
	ix. List out file attributes.	1M	5	1
	x. Differentiate HDD and SSD.	1M	5	2
Q.2(A)	Explain about the computer system organization in detail.	10M	1	2
	OR			
Q.2(B)	Discuss in detail about Interrupt handling with neat diagram.	10M	1	2
Q.3(A)	Explain about semaphores in detail.	10M	2	2
	OR		- 9	
Q.3(B)	Explain in detail about Inter-process communication.	10M	2	2
Q.4(A)	Elaborate about the deadlock prevention mechanism in detail.	10M	2	2
	OR			
Q.4(B)	Solve the CPU scheduling with respect to FCFS, RR and SJF	10M	2	4

 Process
 Arrival time
 Burst Time

 P1
 0 ms
 5 ms

 P2
 1 ms
 3 ms

 P3
 2 ms
 3 ms

 P4
 4 ms
 1 ms

Q.5(A) Discuss the following allocation algorithms.

(i) First Fit (ii) Best Fit (iii) Worst Fit

10M

3

2

OR

Q.5(B)	Given memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB. How would each of the First fit Best-Fit and Worst-Fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB? Rank the algorithms in terms of how efficiently they use memory.	10M	4	5
Q.6(A)	Discuss in detail about File system Protection.	10M	5	2
	OR			
Q.6(B)	Explain about the different access methods of a file?	10M	5	1
	*** END***			

Hall Ticket No:			1,10			Question Paper Code: 20CSE107

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 OPERATING SYSTEMS FUNDAMENTALS

(Computer Science & Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	СО	BL
Q.1	i. Define Batch system.	1M	1	1
<u> </u>	ii. State the advantages of multiprogramming.	1M	1	2
	iii. What are the types of schedulers?	1M	2	1
	iv List out the types of Multithreading Models.	1M	2	1
	v. What is semaphore?	1M	3	1
	vi Define entry and exit sections of a critical section.	1M	3	1
	vii. Define swapping.	1M	4	1
	viii. Define MVT.	1M	4	1
	ix. Outline the drawbacks of Contiguous Allocation of Disk Space.	1M	5	2
	x. Categorize the various File Attribute.	1M	5	4
Q.2(A)	Define system calls, write about various system calls.	10M	1	2
	OR ·	W		
Q.2(B)	Illustrate the system components of an operating system and explain them briefly?	n 10M	1	2
Q.3(A)	Explain the Scheduling Criteria	10M	2	2
	i) CPU Utilizationii) Turnaround Timeiii) Waiting Timeiv) Response Time			
	OR			
Q.3(B)	Discuss the following		2	2
	i) CPU-I/O burst cycle	4M		
	ii) CPU schedule	2M		
	iii) Pre-emptive and non-preemptive scheduling	2M		
	iv) Dispatcher	2M		
Q.4(A)	Discuss on process Synchronization. Illustrate any two classical Problem of Synchronization	s 10M	3	6
	OR			
Q.4(B)	Define deadlock and explain Banker's algorithm for deadlock avoidance	. 10M	3	۱ 2
Q.5(A)	State and explain about virtual memory with neat diagram.	10M	4	2
	OR			
Q.5(B)	Extend your views on Demand paging.	10M	4	2
Q.6(A)	Explain with a neat sketch about the various directory structures.	10M	5	2

Q.6(B) Consider that a disk drive has 5000 cylinders, numbered 0 to 4999 the drive is currently serving request at cylinder 143, and the previous request was at cylinder 125 the queue of pending requests in FIFO order is :86,1470,913,1174,948,1022,1750,130

Starting from head position, what is the total distance (in cylinders that the disk arm moves to satisfy all pending request for each of the following disk scheduling algorithms?

- i)- FCFS
- ii) SSTF
- iii) SCAN
- iv) C-SCAN

*** FND***

10M

Hall Ticket No:						Question Paper Code: 20CSE108

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 JAVA PROGRAMMING

(Computer Science & Engineering)

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No	Question	Marks	CO	BL
Q.1	i. List the feature of Java.	1M	1	1
	ii. Define the Inheritance.	1M	1	1
	iii. What is the usage of 'super' keyword?	1M	2	1
	iv What is the importance of Package?	1M	2	1
	v. List out the Java built-in Exceptions.	1M	3	1
	vi What are the states the Thread undergoes during execution time?	1M	3	1
- "	vii. What is Collections framework in Java?	1M	4	1
	viii. What is mean by I/O streams. State its types.	1M	4	1
	ix. What is Tree component in Java Swing?	1M	5	1
	x. What are the steps for using tables in JApplet?	1M	5	1
Q.2(A)	Explain in detail about constructors and its types with suitable examples?	10M	1	2
	OR			
Q.2(B)	Develop a Java program to calculate the 3*3 matrix multiplication using arrays.	10M	1	6
Q.3(A)	Explain different types of Inheritances in detail with suitable examples?	10M	2	2
	OR			
Q.3(B)	Develop a Java program to create an interface 'prime' and has a method	10M	2	6
, , ,	'display'. It should take an integer input and returns the total number of			
	prime number between 2 and integer 'n'.			
Q.4(A)	What is Exception? Explain Exception handling in detail with an example?	10M	3	2
	OR			
Q.4(B)	Develop a Java program to implement the Producer – Consumer problem	10M	3	6
Q. 1(D)	using Inter-thread Communications?			
Q.5(A)	Explain in detail about the implementation of Stack using Collections	10M	4	. 3
-443	Framework?			
	OR			
Q.5(B)	Develop a Java program to read a file and count the number of lines and	10M	4	6
, ,	words in it using I/O Streams.			
Q.6(A)	Discuss about any two of the Components of JSwing.	10M	5	2
	OR			
Q.6(B)	Develop a Java program to design and develop a Simple Calculator using AWT controls.	10M	5	ŧ
	AVVI CONTROIS. *** END***			

*** END***

Hall Ticket No:						Question Paper Code: 20CSE109

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science & Engineering)

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define time and space complexity.	1M	1	1
	ii. List any two differences between Quick sort and merge sort.	1M	1	1
	iii. Define objective function.	1M	2	1
	iv Can we solve 0/1 knapsack problem with greedy method? Give a one line reason.	1M	2	1
	v. Define spanning Tree.	1M	3	1
	vi What is the key idea of all pairs shortest path algorithm?	1M	3	1
	vii. Give the formula to evaluate the number of nodes in 8-queens state space tree?	1M	4	1
	viii. What is the E-node selection rule for LC search?	1M	4	1
	ix. State Cooks theorem?	1M	5	1
	x. Define an approximate solution.	1M	5	1
Q.2(A)	Solve the recurrence relation using substitution method (analyze the time complexity). $T(n) = \begin{cases} 1 & n=1 \\ T(n-1)+n & n>1 \end{cases}$	10M	1	6
Q.2(B)	OR Explain the strassen's matrix multiplication?	10M	1	2
Q.3(A)	Find an optimal solution to the knapsack instance n=7,m=15,(p1,p2,p7)=(10,5,15,7,6,18,3) and (w1,w2,w7)=(2,3,5,7,1,4,1)	10M	2	5
	OR	4014	- 2	_
Q.3(B)	Explain about matrix chain multiplication with an example.	10M	2	2
Q.4(A)	Explain Depth first search algorithm with an example?	10M	3	5
	OR			
Q.4(B)	Discuss Floyd-Warshall's All Pairs Shortest Path Algorithm and find the shortest path between every pair of vertices of the given graph.	10M	3	į

Determine the cost of an optimal tour for a given network using Branch and 10M 5

10M

Q.5(B) Bound method, start from city A.

Create the solution to 4 Queen's problem using backtracking algorithm.

Q.5(A)

Q.6(A)	Distinguish P, NP, NP hard and NP- complete. Give example problems for each.	10M	5	4
	OR			
Q.6(B)	Analyze the approximation algorithm for knapsack problem.	10M	5	4
	*** END***			

				Question Paper Code: 20MAT112
Hall Ticket No:	4-4 1			Question ruper vers =
HOU HAVE		The second secon		

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 DISCRETE MATHEMATICAL STRUCTURES

(Common to CSE, CSE(AI), CSE(DS), CSE(IOT), CSE(CS) & CST)

Time: 3Hrs

ONG	Questions	Marks	CO	BT
Q.No	Construct the truth table for $PA \neg Q$.	1M	1	1
Q.1 i	100	1M	1	1
1	i. What is Quantifiers?	1 16544111	1	1
	ii. ∇^n (n) –	1M	2	1
	$\int_{-\infty}^{\infty} {\binom{k}{k}} = \frac{1}{k}$	454	2	1
	How many people must be selected to guarantee that at least two	1M	2	
	with the same birthday?	40.0	2	4
	v. Define grammar.	1M	3	, 1
	vi Define co-set of a groups.	1M	3	1
	vii. Draw Hasse diagram of (P (A), ⊆) for A={a, b, c}.	1M	4	1
	viii. What is cyclic graph?	1M	4	. 1
	ix. Define adjacency matrix of the graph.	1M	5	1
	x. What is minimum spanning tree?	1M	5	1
2 2/12	(i) Show the following implication $((PV-P)\rightarrow Q)\rightarrow ((PV-P)\rightarrow R)\Rightarrow (Q\rightarrow R)$.	5M	1	3
Q.2(A)	(ii) Show the following equivalence $\neg (P \rightleftharpoons Q) \Leftrightarrow (P \land \neg Q) \lor (\neg P \land Q)$.	5M		3
	(ii) Show the following equivalence in East No.			
	(i) Show that SVR is a tautologically implied by $(PVQ) \land (P \rightarrow R) \land (Q \rightarrow S)$.	5M	1	3
		5M		3
Q.2(B)	· ·		19	异
-(-(-)	$(x)(H(x)\rightarrow M(x)),$			
	and (3x)H(x)	5M	2	2
Q.3(A)	(i) Each user on a computer system has a password, which is six to eight	2111	10	
	characters long, where each character is an uppercase letter or a digit.		60	
	Each password must contain at least one digit. How many possible			
	passwords are there?	5M		3
	(ii) How many positive integers between 10 and 1000 inclusive are	3111		Ū
	divisible by 5 but not by 6?			
	OR	EM.	2	19
Q.3(B)	(i) How many different strings can be made by reordering the letters of	5M	_	
	the word "SUCCESS"?			24
	(ii) How many solutions does the equation $x_1 + x_2 + x_3 = 10$ have	, 5M		THE .
	where x_1 , x_2 , and x_3 are positive integers?	5.		
Q.4(A)	Derive the language $L(G) = a^2b^2c^2$ is generated by the following	g 10M	3	
U.4(A)	grammar G = Where φ consists of the	=		
	productions S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc	,		
	cC→ cc.	12		
	cc-7 cc.			30

Derive the language $\Omega(G) = a^2b^2c^2$ is generated by the following grammar, $G = c_{12}^2$, $G = C_{11}^2$ (a) b, G_{11}^2 is the Where Φ consists of the

Hall Ticket No: Question Paper Code: 20CSD105	Hall Ticket No:											Question Paper Code: 20CSD1	09
---	-----------------	--	--	--	--	--	--	--	--	--	--	-----------------------------	----

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science & Engineering (Data Science))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	В
Q.1	i. Differentiate between Big-oh and Omega notation.	1M	1	1
	ii. What are Polynomial time and Non-deterministic Polynomial time algorithms?	1M	1	1
	iii. Define time complexity.	1M	2	1
	iv Define Divide & Conquer Strategy.	1M	2	1
	v. Name two optimization problems where branch and bound algorithm is used.	1M	3	1
	vi State 4-Queens problem.	1M	3	1
	vii. When do you apply dynamic programming to solve a problem?	1M	4	:
	viii. Define the terms feasible solution, optimal solution, and objective function.	1M	4	
	ix. Differentiate between Big-oh and omega notation.	1M	5	
	x. What do you understand by worst-case time complexity? What is it for merge sort algorithm?	1M	5	
Q.2(A)	i) Write the pseudo code for Quick sort. What is its time complexity?	5M	1	
	ii) Analyze the time complexity of the following recursive algorithm using Master's method.	5M		X
	T(n)=2T(n/2) + n			
	OR			
Q.2(B)	Explain recursive binary search algorithm and mention the algorithm's time complexity.	10M	1	
Q.3(A)	Write step by step process for finding optimal sequence for the below job	10M	2	
	sequencing with deadlines instance, n=6, (p1,p2,p3,p4,p5,p6) = (3, 5, 20, 18,			
	1, 6), and (d1,d2,d3,d4,d5,d6) = (1, 3, 4, 3, 2, 1).			
	OR			
Q.3(B)	Identify the bit-strings for every character to encode "THE ESSENTIAL	. 10M	2	
Q.5(D)	FEATURES" using Huffman code.			
Q.4(A)	Traverse the graph below in Breadth First Order.	10M	3	
Q.4(A)	Have 13e the graph below in breadth instruction.		-	

Q.4(B) Using Floyd-Warshall's All Pairs Shortest Path Algorithm compute the shortest path between every pair of vertices of the given graph.

10M 3 5

Q.5(A) i) Distinguish Backtracking and Branch and bound methods.

ii) State sum of subsets problem. Explain how to solve sum of subsets problem using backtracking method with an example.

OR

Q.5(B) Present the algorithm to solve sum of subset problem using backtracking algorithm. Explain step by step with the example when the set $A = \{4, 9, 20, 14, 10, 17\}$ and the target sum T = 30.

3

Q.6(A) i) Explain P, NP class of problems with examples.
ii) Define Satisfiability Problem?
iii) What are NP hard class of problems?

3M 5 3M

iii) What are NP hard class of problems?

4M

5M

10M

Q.6(B) i) What is Cook's theorem? Why is it useful?

5M 5 3

i) What is Cook's theorem? Why is it useful?ii) Let S be an NP-complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to S and S is polynomial-time reducible to R. Then, what class problem is R?

*** END***

Hall Ticket No:						Question Paper Code: 20CSD107
idii iidiict iidi		-				

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 OPERATING SYSTEMS FUNDAMENTALS

(Computer Science & Engineering (Data Science))

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

All parts of Q.no 1 are compulsory. In Q.no 2 to 6 answer either A or B only

Q.No	Question	Marks	CO	BL
Q.1	i. Differentiate between kernel mode and user mode.	1M	1	1
	ii. What is Argument Validation?	1M	1	1
	iii. How many types of of threads?	1M	2	1
	iv What is CPU utilization?	1M	2	1
	v. What is a critical section? Give examples.	1M	3	1
	vi Differentiate Semaphore and Counting Semaphore.	1M	3	1
	vii. Distinguish between Logical and Physical address space.	1M	4	3
	viii. Explain various ways to handle a page fault.	1M	4	4
	ix. Write short notes on File Attributes.	1M	5	1
	x. List the steps needed for page replacement.	1M	5	2
Q.2(A)	Mention the objectives/and functions of Real-Time Embedded systems.	10M	1	1
	OR			
Q.2(B)	Distinguish between client-server and peer-to-peer models of distributed systems.	10M	1	2
Q.3(A)	Define a Thread? Give the benefits of multithreading. What resources are used when a thread is created? How do they differ from those used when a process is created?	10M	2	1
Q.3(B)	OR Assume the following workload in a system:	10M	2	4
	Process Arrival Time Burst Time			
	P1 5 5			
	P2 4 6			
	P3 3 7			
	P4 1 9			
	P5 2 2			
Q.4(A)	What is Dining Philosophers problem? Discuss the solution to Dining philosopher's problem using monitors?	10M	3	4
	OR OR			
Q.4(B)	Explain about the strategies to recover from deadlock?	10M	3	2

OR

Q.5(B)	Write a short note on the following i) Stable storage implementation ii) Free space management.	10M	4	1
Q.6(A)	How to organize the mass storage? Explain?	10M	5	2
	OR			
Q.6(B)	Describe any two disk scheduling algorithms with suitable illustrations.	10M	5	5
	*** END***	200		

Hall Ticket No.		Question Paper Code: 20CSD10
Hall Ticket No:	1 1 1	

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations -September 2022 PYTHON FOR DATA SCIENCE

(Computer Science & Engineering (Data Science))

Time: 3Hrs

Max Marks: 60

O No	Question	Marks	CO	BL
Q.No		1M	1	1
Q.1		1M	1	1
	ii. What is Big data?iii. How to create a ND array? Give one suitable example.	1M	2	1
	to a complete transposing	1M	2	1
		1M	3	1
		1M	3	1
	vi Define Drop Index?	1M	4	1
	vii. What do you mean by missing values in pandas?	1M	4	1
	viii. What is Histogram?	1M	5	1
	ix. What is K-Means Algorithm?	1M	5	1
	x. List out some of the applications of machine learning.	10M	1	2
Q.2(A)	What is the difference between data cleaning and data transformation? Explain	TOIAL	_	
	the steps in involving in Data cleaning process?			
	OR	10M	1	2
Q.2(B)	Discuss any 5 data science real-time application scenarios.	TOIVI		
		10M	2	2
Q.3(A)	What is slicing and indexing in NumPy? Explain various methods used for			
	implementing slicing and indexing in python?			
	OR	10M	2	2
Q.3(B)	Explain transposing and swapping in NumPy using suitable syntax and examples?		ALCOHOLD ST	and the same
Maria Santana	Illustrate how to Sort Data in a Pandas Data Frame.	10M	-3	3
Q.4(A)				
	OR	10M	3	3
Q.4(B)	Write various methods involving in Indexing and Selecting Data with Pandas.	TOIAI	3	
		10M	4	
Q.5(A)	Write various methods used for handling Missing Data in Pandas.			
	OR			
- O E/D)	Illustrate the data frame in python pandas using Min, Max, Dense and Rank by	10M	4	
Q.5(B)				
Series and	Group.	10M	5	
Q.6(A)	What is reinforcement machine learning algorithm? Illustrate the categories of			
	supervised machine learning algorithm with its advantages, disadvantages and			
	applications?			
	OR	10M	5	
Q.6(B	Demonstrate in detail about Naive Bayes Classifier with its types and	10141		
•	applications.			
	*** END***			

Hall Ticket No:										Question Paper Code: 20CSO107
-----------------	--	--	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations - August 2022 INTERNET OF THINGS

(IoT)

Time: 3Hrs

Max Marks: 60

Q.N	lo	Question	Marks	CO	BL
Q.1	i.	Elaborate the term "Ubiquitous computing".	1M	1	1
	ii.	Write the role of communication Unit in IOT.	1M	1	1
	iii.	What is SoC?	1M	2	1
	iv	What are the internal blocks of raspberry pi?	1M	2	1
12	٧.	How many GPIO pins are present in Raspberry Pi 3?	1M	3	1
	vi	Specify the role of Linux commands, "mkdir" and "ls".	1M	3	2
	پانان	What is an IP address?	1M	4	2
	viii.	What is length of IPv6 Address?	1M	4	1
	ix.	What is full form of REST?	1M	5	1
	X.	What is the use of htpp?	1M	5	1
Q.2(A)	i.	What are the basic differences between SoC (System-on-chip) and MCU (Microcontroller unit)?	5M	1	1
	ii.	Give a comparative analysis between WoT and IoT.	5M	1	1
		OR	2101	1	1
O 2/P)	Wha	t are the basic differences between SoC (System-on-chip) and MCU	10M	1	1
Q.2(B)		rocontroller unit)?	TOIVI	1	1
Q.3(A)	Expl	ain the pin description of Arduino UNO and mention its specification	10M	2	1
	and	individual components.			
		OR			
Q.3(B)	Writ	e a program to glow a LED at an interval of 20ms connected to pin	10M	2	3
	num	ber 6 of an Arduino UNO at an interval of 20ms, if input voltage across			
	A0 p	in is above 4.2V.			
Q.4(A)	Expl	ain different generation of Raspberry Pi and what is role of SPI	10M	3	2
. ,		face, TWI interface, UART and DMA controller available in Raspberry			
		pard.			
		OR			
Q.4(B)	Writ	e a program for raspberry pi to read digital input from any sensor at	10M	3	3
	inte	rval of 100ms.			
Q.5(A)	i.	What is the difference between IPv4 and IPv6? Provide a detail	4M	4	2
-0.5 (1.1)		comparison with suitable explanation.			
	ii.	Write short Notes on the following	4M	4	2
		a) Static IP address assignment b) Domain name system			
		OR			
		On the second se			
∩ 5/R\	For	given IP address 157 48 93 43/17 find following parameters	10M	4	7
Q.5(B)		given IP address 157.48.93.43/17 find following parameters Subnet Mask ii) Class iii) Type iv) Network ID	10M	4	2

- Q.6(A) What is curl? Give names of any five protocols that are associated with 10M 5 curl
 i) What is MQTT protocol? Explain how MQTT is different from XAPP?
 ii) What is Constrained Application Protocol (CoAP)?

 OR
 Q.6(B) What is real time reaction? Explain with the help of Polling and Comet. 10M 5 / 2 How scaling works with Comet?
 - *** END***

Hall Ticket No:					Question Paper Code: 20CSO108
indir more me.				- 1	

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 DATABASE MANAGEMENT SYSTEM

(Computer Science & Engineering (IOT))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. List the properties of the database system.	1M	1	1
	ii. What do you mean by Derived attribute?	1M	1	2
	iii. Define Cartesian product operator in relation algebra?	1M	2	1
	iv Distinguish between select and project operations.	1M	2	1
	v. What is the difference between 1NF and 2NF?	1M	3	2
	vi Compare immediate and deferred update.	1M	3	1
	vii. Define check point.	1M	4	1
	viii. Define loss less join decomposition with example?	1M	4	1
	ix. List out the ACID properties?	1M	5	1
	x. What is the Condition for 2PL?	1M	5	1
Q.2(A)	Illustrate and create an ER diagram for the Library Management System?	10M	1	2
	OR			
Q.2(B)	Discuss various types of databases?	10M	1	2
Q.3(A)	Explain the fundamental operations in relational algebra with examples?	10M	2	3
	OR			
Q.3(B)	Explain the Tuple relational calculus (TRC) and Domain relational calculus (DRC) with examples?	10M	2	2
Q.4(A)	(i) A Relation R (A, B, C, D) has FD C -> B. is in 3NF? Justify your answer. (ii) A Relation R (A, B, C,) has FD's A -> AC, is R is in 3NF? Does AC -> C? Justify your?	10M	3	2
Q.4(B)	OR Explain briefly the following: (i) Functional dependency, (ii) Partial dependency, (iii) Full dependency, (iv) Transitive dependency and	10M	3	5
0.5/4)	(v) Trivial dependency	1004	4	- 6
Q.5(A)	Explain the construction of B trees with example?	10M	4	. 0
Q.5(B)	OR Explain three types of conflicts occur with the Concurrent Execution of the operations?	10M	4	5
Q.6(A)	Explain the CAP theorem in NOSQL with example?	10M	5	5
Q.6(B)	OR Explain the shadow paging recovery technique?	10M	5	
	*** END***			

Hall Ticket No:					Question Paper Code: 20CSO109
-----------------	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 COMMUNICATION NETWORKS

(Computer Science & Engineering (IOT))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define multiplexing and demultiplexing?	1M	1	
	ii. Classify the various devices used in different layers of TCP/IP layers?	1M	1	
	iii. List the functions of LLC?	1M	2	
	iv Define ALOHA and its importance?	1M	2	
	v. What is broadcast routing?	1M	3	
	vi Define choke packet?	1M	3	
	vii. How congestion control is different from flow control?	1M	4	
	viii. What are the functions of a transport layer.	1M	4	
	ix. What is the use of SNMP?	1M	5	
	x. What is Client and Server?	1M	5	
Q.2(A)	Explain in detail about layers of ISO-OSI model with a neat diagram?	10M	1	
/- \	OR How TCP/IP is different from Layered architecture. Explain in detail.	10M	1	
Q.2(B)	How TCP/IP is different from Layered architecture. Explain in detail.	TOIVI		
Q.3(A)	a) Outline the transfer modes provided by HDLC? Explain.	10M	2	
	b) Illustrate the frame format of HDLC protocol with every field in detail			
	OR			
Q.3(B)	Given the generator polynomial x^3+1 and data polynomial x^7+1 . Test the error if any using CRC method	10M	2	
Q.4(A)	Explain link state routing algorithm with an example?	10M	3	
	OR			
Q.4(B)	Discuss Distance vector routing algorithm in detail?	10M	3	
Q.5(A)	What is the format of TCP segment. With a diagram explain the c	10M	4	
	establishment and release phases of TCP. Discuss the issues associated wir			
Q.5(B)	Discuss the various congestion prevention policies?	10M	4	
Q.6(A)	Explain the Server side and client-side web page generation	10M	5	
Q.6(B)	OR How computer networks are used in health care applications? Explain.	10M	5	
ر.u(<i>ه</i>)		TOIAI		
	*** [N] [) ***			

Hall Ticket No:									Question Paper Code: 20CAI107
-----------------	--	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 OPERATING SYSTEMS FUNDAMENTALS

(Computer Science & Engineering (Artificial Intelligence))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. List the functions of Operating Systems.	1M	1	1
	ii. Define system call.	1M	1	1
	iii. What are the various scheduling criteria for CPU scheduling?	1M	2	1
	iv Differentiate between Thread and Process.	1M	2	1
	v. Define semaphore.	1M	3	1
	vi What are the methods for handling deadlocks?	1M	3	1
	vii. Difference between internal and external fragmentation.	1M	4	1
	viii. What is virtual memory? Mention its advantages.	1M	4	1
	ix. Write the objectives of File Management System.	1M	5	1
	x. Define seek time and latency time.	1M	5	1
Q.2(A)	What are the various components of operating – system structure explains the simple and layered approach of operating system in details. OR	10M	1	2
Q.2(B)	Explain Microkernel and multithreading operating system designs with advantages and disadvantages.	10M	1	2
Q.3(A)	What is a process? With a neat sketch, illustrate various fields of Process	10M	2	2
	Control Block. OR	<u>.</u>		
Q.3(B)	Does preemptive scheduling give same performance as non-preemptive scheduling algorithm? Compare their performance by assuming at least 5 processes arrived at different time intervals.	10M	2	4
Q.4(A)	What is Dining Philosophers problem? Discuss the solution to Dining philosopher's problem using monitors. OR	10M	3	3
Q.4(B)	Illustrate Bankers algorithm for deadlock avoidance with an example.	10M	3	3
Q.5(A)	Illustrate the page-replacement algorithms i) FIFO ii) Optimal Page Replacement use the reference string 7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0, 1 for a memory with three frames. OR	10M	4	
Q.5(B)	Explain in detail about demand paging.	10M	4	2
0.6(4)	Discuss about various file allocation methods.	10M	5	
Q.6(A)	OR			

Hall Ticket No: Question Paper Code: 20CAI1	Hall Ticket No: Question Paper Coo	e: 20CAI108
---	------------------------------------	-------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 Al Tools, Techniques & Applications

(Computer Science & Engineering (Artificial Intelligence))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. How are Al algorithms different from non-Al algorithms?	1M	1	1
	ii. Differences between supervised learning and unsupervised learning	1M	1	1
	iii. Draw the pdf $\mathcal{N}(10,2)$, showing one standard-deviation, and two standard-deviation lines on both sides of the mean	1M	2	2
	iv Define an Outlier data?	1M	2	1
	v. Is the input layer counted in multi-layer perceptron? If not, why not?	1M	3	1
	vi Is Decision Tree a classifier or clustering algorithm?	1M	3	1
	vii. What is the purpose of stemming and lemmatization?	1M	4	1
	viii. What is a utility matrix?	1M	4	
	ix. List the two labels of data for object detection?	1M	5	1
	x. What is the purpose of image segmentation?	1M	5	
Q.2(A)	Explain using a univariate regression example the terms: Sum squared error (or Sum squared total), Sum squared residual, and Sum squared explained?	10M	1	3
	O.D.			
	OR i) Evaluin university Linear Regression with a consent evanual?	214	1	2
O 2(B)	i) Explain univariate Linear Regression with a concrete example?ii) Give an example of multivariate regression problem	3M 3M-	1	
Q.2(B)	iii) Write the objective function to optimize for linear regression.	4M		
0.2(4)				_
Q.3(A)	i) Draw the competitive learning (CL) network and explain its working	3M	2	3
	Principle?	3M		
	ii) Write the pseudocode for training the CL network. iii) When will CL fail to cluster properly? Explain with diagram? OR	4M		
Q.3(B)	Explain Elbow method in details, with diagram? How does it determine proper value of the number of clusters?	10M	2	3
Q.4(A)	Could the classification result change if the size of the Parzen window is changed? Explain with diagram. Explain how Parzen window classifier could be made robust by using radial basis function kernel. OR	10M	3	2
Q.4(B)	What is a confusion matrix? Explain with an example? What are False positive, False negative and F-score?	10M	3	1
Q.5(A)	What is a document matrix, explain with an example? What is meant by document classification? Explain?	10M	4	4

4 15 4

Q.5(B)	Explain document classification using latent semantic analysis. What is the difference between a topic and a term?	10M	4	3
Q.6(A)	Explain Boltzmann learning with respect to convolution neural network. Draw the full configuration of Le-Net5 and Alex Net. OR	10M	5	4
Q.6(B)	Explain the idea behind "Edge based segmentation". Please elaborate how a sobel filter perform edge based segmentation, using an example? *** END***	10M	5	3

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations – September 2022 DESIGN AND ANALYSIS OF ALGORITHM

(Computer Science & Engineering (Artificial Intelligence))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	В
Q.1	i. Differentiate between Big-oh and omega notation.	1M	1	1
	ii. What do you understand by worst-case time complexity? What is it for merge sort algorithm?	1M	1	1
	iii. When do you apply dynamic programming to solve a problem?	1M	2	1
	iv Define the terms feasible solution, optimal solution, and objective function.	1M	2	:
	v. What are the two graph traversal algorithms?	1M	3	
	vi How to ensure that a graph is bi-connected?	1M	3	
	vii. Name one application of graph colouring algorithm?	1M	4	
	viii. State 4-Queens problem.	1M	4	
	ix. What is a P class problem?	1M	5	
	x. Define reducibility.	1M	5	
Q.2(A)	i) Analyze the time complexity of the following recursive algorithm using Master's method. $T(n) = 2T(n/2) + 1$ ii) Analyze the time complexity of the following recursive algorithm using	5M 5M	1	
	Master's method. $T(n)=2T(n/2)+n$			
	OR			
Q.2(B)	Write an algorithm for Recursive sum and find the time complexity of the algorithm.	10M	1	4
Q.3(A)	Solve the following fractional knapsack problem using greedy algorithm: Weights are W :{1,3,5,6,7}; profits P: {3,9,7,11,18}. The knapsack capacity is 15. OR	10M	2	
Q.3(B)	Explain job sequencing with deadlines when n=6, $(p1,p2,p3,p4,p5,p6) = (3, 5, 20, 18, 1, 6)$, and $(d1,d2,d3,d4,d5,d6) = (1, 3, 4, 3, 2, 1)$. Write the algorithm	10M	2	
	steps. Explain your solution steps with the above example.			

Q.4(B) Using Floyd-Warshall's All Pairs Shortest Path Algorithm compute the shortest path between every pair of vertices of the given graph.

A thief enters a house for robbing it. He can carry a maximal weight of 5 kg into 10M Q.5(A) his bag. There are 4 items in the house with the following weights and corresponding values. What is the maximum value the thief could take, and what are the items to select. The thief can either take or leave an item completely? Provide the solution using branch and bound approach.

ltem	Weight (kg)	Value (Rs.)
Mirror	2	3
Chair	3	4
TV	4	5
Vase	5	- 6

OR

- Present the algorithm to solve sum of subset problem using backtracking Q.5(B) algorithm. Explain step by step with the example when the set A = {4, 9, 20, 14, 10, 17) and the target sum T = 30.
 - 3 10M

5

5

3

3

- Q.6(A) i) Define P, NP class of problems with examples. Represent the two sets using a Venn diagram.
 - 3M 4M

3M

5M 5M

iii) What are NP hard class of problems?

ii) Define Satisfiability Problem.

OR

*** END***

Q.6(B) i) What is Cook's theorem? Why is it useful? ii) Let S be an NP-complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to S and S is polynomialtime reducible to R. Then, what class problem is R?

Page 2 of 2

Hall Ticket No:								(t	Question Paper Code: 20CSC107
-----------------	--	--	--	--	--	--	--	----	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 OPERATING SYSTEMS FUNDAMENTALS FOR SECURTY

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. Define System Programs.	1M	1	1
	ii. Mention the list of services provided by an Operating System?	1M	1	1
	iii. What are the requirements that a solution to the critical section problem must satisfy?	1M	2	2
	iv What are the conditions under which a deadlock situation may arise?	1M	2	1
	v. What are the common strategies to select a free hole from a set of available holes?	1M	3	1
	vi How the problem of external fragmentation can be solved.	1 M	3	1
	vii. What do you meant by DAC systems?	1M	4	1
20	viii. Mention some of the key characteristics of Trusted systems.	1 M	4	1
	ix. What are cons and pros of windows OS?	1M	5	1
	x. Define Kerberos Network Authentication.	1M	5	1
Q.2(A)	Explain about the components of operating system in detail.	10M	1	2
	OR			
Q.2(B)	Elaborate on System Calls with neat diagram.	10M	1	2
Q.3(A)	Discuss any two classic problems of synchronization	10M	2	3
	OR			
Q.3(B)	Explain the various deadlock handling mechanism in detail.	10M	2	3
Q.4(A)	Differentiate between Paging and Segmentation.	10M	3	2
	· OR			
Q.4(B)	Explain in detail about different disk scheduling algorithms?	10M	3	2
Q.5(A)	Define threat. Explain the significance of creating threat model in system of	10M	4	2
	OR			
Q.5(B)	Write short note on (i)Bell la padula Model (ii) Biba Integrity Model	10M	4	2
Q.6(A)	Discuss in detail about Windows security architecture.	10M	5	2
	OR			
Q.6(B)	Define Fault tolerance. Explain different fault tolerant issues in detail.	10M	5	2

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 JAVA PROGRAMMING

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. What are constructors? What are the points to remember?	1M	1	1
	While working with constructors?		7	
	ii. What is inheritance?	1M	1	1
	iii. Differentiate abstract class and an Interface	1M	2	1
	iv What is meant by packages?	1M	2	1
	v. List some methods supported by threads.	- 1M	3	1
	vi What are the differences between Multithreading and Multitasking?	1M	3	1
	vii. List the type of streams supported in Java.	1M	4	1
	viii. What is Iterator?	1M	4	2
	ix. Explain briefly JComboBox with syntax	1M	5	2
	x. List two limitations of AWT.	1M	5	1
Q.2(A)	Write a java program for matrix multiplication using 2-D arrays.	10M	1	5
	OR			
Q.2(B)	Elaborate on the various object oriented concepts, with necessary illustrations.	10M	1	2
Q.3(A)	What is package? State how to create and access user defined package in Java	10M	2	3
	OR			
Q.3(B)	Write a java program for method overriding.	10M	2	5
Q.4(A)	With proper syntax and example explain following thread methods:	10M	3	2
	(i) wait () (ii) sleep () (iii) resume () (iv) notify ()			
	OR			
Q.4(B)	Write a program to demonstrate synchronization of multiple threads.	10M	3	3
		10M	4	5
Q.5(A)	Write a Java program to create Linked List?	TOIM	4	-
	OR			
Q.5(B)	Explain in detail about HashSet Class with its Constructors and Methods?	10M	4	2
Q.6(A)	Explain the following: i) Limitations of AWT and ii) Containers in Swing	10M	5	2
	OR			
Q.6(B)	Write a Java program using JLabel, JTextField and Jbutton.	10M	5	5

Hall Ticket No:	Question Paper Code: 20CSC109
-----------------	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs

Max Marks: 60

ii. Write a short note on properties of Algorithm iii. State the general principle of greedy method. iv Applications of the Optimal merge pattern. v. Distinguish prim's and kruskal's algorithm vi What does Floyd's Algorithm do? vii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 1 Explain? OR 1(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 Apply matrix chain multiplication. OR 1.3(8) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 3 A-24(A) Write in detail about Topological sort. Give example to it? OR Find the optimal Huffman code for the following set of frequencies. A-3(5) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR OR C-5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) OR OR OR OR OR OR C-5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) OR OR OR OR OR OR OR OR OR O	Q.No	Question	Marks	CO	BL
iii. State the general principle of greedy method. iv Applications of the Optimal merge pattern. v. Distinguish prim's and kruskal's algorithm vi What does Floyd's Algorithm do? vii. Define Branch and Bound. viii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 1 2.2(A) In what way amortized analysis is used for performance analysis of algorithms? 10M 1 Explain? OR T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 Explain? OR 1.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and 10M 2 Apply matrix chain multiplication. OR 0.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 Programming with example? 0.4(A) Write in detail about Topological sort. Give example to it? OR 0.4(B) Find the optimal Huffman code for the following set of frequencies. 0.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n 10M 4 2 3 4 4 5, B:13, C:12, D:16, E:9, F:5 0.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (W1 w2 w3) = (10, 12, 3) 0.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M 5 NP and NP hard problem? OR	Q.1	i. State Master's theorem.	1M	1	1
iv Applications of the Optimal merge pattern. v. Distinguish prim's and kruskal's algorithm vi What does Floyd's Algorithm do? vii. Define Branch and Bound. viii. Define Branch and Bound. viii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 1 2.2(A) In what way amortized analysis is used for performance analysis of algorithms? OR T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 functions to find out the time complexities? 0.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR 0.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 Programming with example? 0.4(A) Write in detail about Topological sort. Give example to it? OR 0.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 0.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n 10M 4 using backtracking algorithm? OR 0.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) 0.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem? OR		ii. Write a short note on properties of Algorithm .	1M	1	1
v. Distinguish prim's and kruskal's algorithm vi What does Floyd's Algorithm do? vii. Define Branch and Bound. viii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 12.2(A) In what way amortized analysis is used for performance analysis of algorithms? OR 1.2(B) T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 functions to find out the time complexities? O.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR OR OR OR OR OR OR OR OR O		iii. State the general principle of greedy method.	1M	2	J. 1
vi What does Floyd's Algorithm do? vii. Define Branch and Bound. viii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 12.2(A) In what way amortized analysis is used for performance analysis of algorithms? 1DM 1 Explain? OR T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) Explain? OR 1.2(B) T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) Explain? OR 1.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR 1.3(B) Write an algorithm to Longest Common Subsequence using Dynamic Programming with example? OR 1.4(A) Write in detail about Topological sort. Give example to it? OR 1.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 O.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR OR 0.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) OR OR OR OR OR OR OR OR OR O		iv Applications of the Optimal merge pattern.	1M	2	1
vii. Define Branch and Bound. viii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. Define reducibility. Define reducibility. Define reducibility. Define reducibility. OR T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 functions to find out the time complexities? DR DR DR DR Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR DR DR DR DR DR DR DR DR DR		v. Distinguish prim's and kruskal's algorithm	1M	3	2
viii. What are the features of Backtracking. ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 1 2.2(A) In what way amortized analysis is used for performance analysis of algorithms? 10M 1 Explain? OR 1.2(B) T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 functions to find out the time complexities? 2.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and 10M 2 Apply matrix chain multiplication. OR 2.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 Programming with example? 2.4(A) Write in detail about Topological sort. Give example to it? 10M 3 A:45, B:13, C:12, D:16, E:9, F:5 2.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR 2.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) 0.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem?		vi What does Floyd's Algorithm do?	1M	3	1
ix. When is a problem said to be NP Hard? x. Define reducibility. 1M 5 1 1M 6		vii. Define Branch and Bound.	1M	4	1
x. Define reducibility. 2.2(A) In what way amortized analysis is used for performance analysis of algorithms? In what way amortized analysis is used for performance analysis of algorithms? In what way amortized analysis is used for performance analysis of algorithms? OR 1.2(B) T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 functions to find out the time complexities? 2.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and 10M 2 3 Apply matrix chain multiplication. OR 2.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 Programming with example? 0.4(A) Write in detail about Topological sort. Give example to it? OR 2.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 0.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR 0.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) 0.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem? OR		viii. What are the features of Backtracking.	1M	4	1
D.2(A) In what way amortized analysis is used for performance analysis of algorithms? OR T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) functions to find out the time complexities? D.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR DR DR DR DR DR DR DR DR DR		ix. When is a problem said to be NP Hard?	1M	5	1
Explain? OR T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 functions to find out the time complexities? O.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR OR OR OR OR OR OR OR OR O		x. Define reducibility.	1M	5	1
T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms h(n) and u(n) 10M 1 3 functions to find out the time complexities? Q.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR Q.3(B) Write an algorithm to Longest Common Subsequence using Dynamic Programming with example? Q.4(A) Write in detail about Topological sort. Give example to it? OR Q.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 Q.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR Q.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) Q.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem? OR	Q.2(A)		10M	1	1
functions to find out the time complexities? D.3(A) Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication. OR D.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 Programming with example? D.4(A) Write in detail about Topological sort. Give example to it? OR D.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 D.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n 10M using backtracking algorithm? OR D.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) D.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M NP and NP hard problem? OR		OR			
Apply matrix chain multiplication. OR 2.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q.2(B)		10M	1	3
2.3(B) Write an algorithm to Longest Common Subsequence using Dynamic 10M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q.3(A)		10M	2	3
Programming with example? Q.4(A) Write in detail about Topological sort. Give example to it? OR Q.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 Q.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR Q.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) Q.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M 5 20 NP and NP hard problem? OR		OR	¥		
OR Q.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 Q.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR Q.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) Q.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem? OR	Q.3(B)		10M	2	2
2.4(B) Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5 2.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm? OR 0.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) 0.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem? OR	Q.4(A)	Write in detail about Topological sort. Give example to it?	10M	3	1
A:45, B:13, C:12, D:16, E:9, F:5 Q.5(A) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n 10M 4 using backtracking algorithm? OR Q.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) Q.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M 5 NP and NP hard problem? OR		OR			
using backtracking algorithm? OR Q.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) Q.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M 5 NP and NP hard problem? OR	Q.4(B)		10M	3	3
Q.5(B) Generate FIFO branch and bound solution for the given knapsack problem. m = 10M 4 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) Q.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M 5 NP and NP hard problem? OR	Q.5(A)	using backtracking algorithm?	10M	4	2
15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) 2.6(A) What does NP and NP-hard mean? Demonstrate approximation algorithm for 10M 5 NP and NP hard problem? OR					
NP and NP hard problem? OR	Q.5(B)		10M	4	,3
OR	Q.6(A)		10M	5	1
	30	·			
Z.o(B) Describe the Polynomial time Approximation.	O C(B)		1014	r	4
	ά.ρ(R)	Describe the Polynomial time Approximation.	TOIAI	5	1

Hall Ticket No:									Question Paper Code: 20CSC109
-----------------	--	--	--	--	--	--	--	--	-------------------------------

(UGC-AUTONOMOUS)

B.Tech II Year II Semester (R20) Regular End Semester Examinations –September 2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science & Engineering (Cyber Security))

Time: 3Hrs

Max Marks: 60

Q.No	Question	Marks	CO	BL
Q.1	i. State Master's theorem.	1M	1	1
	ii. Write a short note on properties of Algorithm.	1M	1	1
	iii. State the general principle of greedy method.	1M	2	1
	iv Applications of the Optimal merge pattern.	1M	2	1
	v. Distinguish prim's and kruskal's algorithm	1M	3	2
	vi What does Floyd's Algorithm do?	1M	3	1
	vii. Define Branch and Bound.	1M	4	1
	viii. What are the features of Backtracking.	1M	4	1
	ix. When is a problem said to be NP Hard?	1M	5	1
	x. Define reducibility.	1M	5	1
Q.2(A)	In what way amortized analysis is used for performance analysis of algorithms? Explain?	10M	1	1
	OR			
Q.2(B)	T(n)=aT(n/b)+f(n). Simplify this recurrence relation in terms $h(n)$ and $u(n)$ functions to find out the time complexities?	10M	1	3
Q.3(A)	Consider A1=5X4, A2=4X6, A3=6X2, A4=2X7.P1=5, P2=4, P3=6, P4=2, P5=7 and Apply matrix chain multiplication.	10M	2	3
	OR			
Q.3(B)	Write an algorithm to Longest Common Subsequence using Dynamic	10M	2	2
	Programming with example?			
Q.4(A)	Write in detail about Topological sort. Give example to it?	10M	3	1
	OR			
Q.4(B)	Find the optimal Huffman code for the following set of frequencies. A:45, B:13, C:12, D:16, E:9, F:5	10M	3	3
Q.5(A)	Discuss the 4 – queen's problem. Draw the portion of the state space tree for n using backtracking algorithm?	10M	4	2
	OR			
Q.5(B)	Generate FIFO branch and bound solution for the given knapsack problem. $m = 15$, $n = 3$. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3)	10M	4	3
0.6(1)	Million does ND and ND hard many 2 Does not the approximation of a sixty of the form	10M	5	1
Q.6(A ₄)	What does NP and NP-hard mean? Demonstrate approximation algorithm for NP and NP hard problem?	TOIVI	3	1
	OR			
O6(B)	Describe the Polynomial time Approximation.	10M	5	1
	*** 540***			